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Abstract. The dynamic loading of multi-component materials disturbs them from equilibrium 
and generates relaxation processes in which components interact with each other exchanging 
momentum and energy (and mass if chemical reactions occur).  The description of exchange 
processes through pair interactions allows considering the individual properties of interacting 
components (particle size, surface roughness, adhesion etc.).  The paper discusses a new type of 
interaction, namely a cluster interaction which gives a new force tensor and new energy fluxes 
whose dependences on the characteristics of each component and on barycentric velocity are 
proposed and validated.  The author introduces a concept of non-equilibrium kinetic energy for a 
component and proposes a new equation for volume concentrations which closes the system of 
conservation equations along with an equation of state for the i-th component, and does not 
impose additional restrictions on mixture properties.  The model admits state and phase changes 
in each component. 

INTRODUCTION 

Pure materials are very few in nature.  Mixtures are most often.  If a small volume 
dθ  contains several ( 1N > ) materials, each of the materials is called a component and 
the medium in the volume is called multi-component.  Impacts on a multi-component 
medium lead to displacements of its components, to their mixing or separation, 
heating and deformation, phase transitions or changes in the state of aggregation (i.e., 
thyxotropy), chemical reactions in the components and other changes. 

The history of multicomponent models goes back to the middle of the XIX century 
but their theory is still to be completed.  Necessary information is still being collected 
through study and application of particular models.  In what all models are weak is the 
description of interactions between components.  Two fundamental problems remain 
unsolved: 

− Derivation of conservation laws for a mixture from the conservation laws 
for its components; and 

− Closure of the system of equations for the i-th component. 
Both have been challenging for science during several decades. Below are their 

solutions. 
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1. MULTICOMPONENT MODELS 

All multicompoenent models can be classified into diffusion models and 
multivelocity continua models in which the behavior of each component is defined by 
conservation laws for macro-scale quantities.  This means that we have passed from 
micro- to macro-scale quantities and each i-th component is a continuum physically 
characterized by a pressure Pi, a temperature Ti, a density ρi, a specific internal energy 
Ei, a velocity iU , an entropy Si etc. Thermodynamic parameters of the i-th component 

are related through an equation of state. 
Consider a small volume dθ  containing a mixture of N component of a mass dM.  

Divide dM and dθ  between all components: 
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The ratios 

 i
i

dM

dM
η = ,   i

i

d

d

θα =
θ

 (2) 

 
are called [1-5] mass and volume concentrations of the i-th component.  Density is 
defined as a mass of material per unit volume.  Therefore 

 i
i

i

dM

d
ρ =

θ
 and  

dM

d
ρ =

θ
, (3) 

 
where ρi is the density of the i-th component and ρ is the density of the mixture. 
Assume that the mass dMi is “smeared” over the entire volume dθ.  The quantity 

 i
i i

dM

d
α ρ =

θ
 (4) 

 
is virtual and called a partial density of the i-th component.  It follows from (2)-(4) 
that i iα ρ  and ρ relate as 

 i i iα ρ = η ρ . (5) 

 
For the specific volume V = 1/ρ, the equation (5) takes the form 
 

 i i iV Vα = η . (6) 

 
It follows from (1), (3) and (4) that the density of the mixture is a sum of the partial 
densities: 
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ρ = α ρ∑ . (7) 

Each component is characterized by a momentum i iU dM .  The law of momentum 

conservation at a fixed time t gives 
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=

=∑ . 

 
Replacing idM  by idMη  with (2) and canceling dM give that the mixture velocity U  

is a sum of the partial velocities i iUη : 

 
1

N

i i
i

U U
=

= η∑ . (8) 

It follows from (5) and (8) that the specific momentum Uρ  of the mixture is a sum of 
specific momenta for components: 
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U U
=

ρ = α ρ∑ . (9) 

The velocity U  defined by (8) is called the barycentric velocity [1, 2]. 
The specific internal energy E is energy per unit mass.  The law of internal energy 

conservation at a fixed time gives 
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=

=∑ . 

Dividing by dM and using (2) give that the specific energy of a mixture is a sum of the 
partial specific internal energies for components: 
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E E
=

= η∑ . (10) 

Similar manipulations with the specific energy give the following equation for the 
total specific energy ε: 

 
1

N

i i
i=

ε = η ε∑ . (11) 

Using (6), rewrite (10) and (11) in the forms 
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E E
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N

i i i
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E(V,S) and Ei(Vi,Si) are thermodynamic potentials and their differentials are 
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For S = const and Si = const, differentiate (6) and (10) with respect to the 
thermodynamic variables V, S and Vi, Si bearing in mind that ηi and αi are independent 
of V, S and Vi, Si.  We obtain two equations 
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EE
dV d V
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⎛ ⎞∂∂⎛ ⎞ = η⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
∑  and  i i i idV d Vα = η  

which give 
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Since 
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the equation (14) means that the total pressure is a sum of the partial pressures: 

 
1

N

i i
i

P P
=

= α∑ . (15) 

This is a general equation.  For the case of ideal gases with identical temperatures 
Тi = T, it was proved by Dalton and was called Dalton law. 

Pi, ρi, Ei, Ti, iU  and others are macro-scale quantities of the i-th component which 

describe it as a continuum.  However, each component is a structural element of the 
mixture.  So, these parameters are meso-scale quantities of the mixture.  The macro-
scale quantities characterizing the behavior of the mixture are derived from the meso-
scale quantities with the equations (7), (8), (10), (11), and (15). 

2. COMPONENT INTERACTIONS 

A multicomponent medium may not be in equilibrium.  Mixture equilibrium 
conditions are 

 i jP P= ,   i jT T= ,   i jU U= . 

If at least one of them is not satisfied, the mixture is not in equilibrium; it tries to attain 
equilibrium through a number of relation processes in which mixture components 
exchange momentum and energy. 

For a long time, multicomponent models have considered only pair interactions in 
which the i-th and j-th components interact independently of all others [1-4].  If 

i jU U≠ , the exchange of their momenta is most often defined by the vector 

 ( ) U
ji ij j i ijR a U U= − τ . 

The functions ija  and U
ijτ  depend on the degree of heterogeneity, on the properties of 

the i-th and j-th components, on the size of their particles, on sound velocity, 
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compressibility, equations of state for the components, on their states of aggregation, 
adhesion and other properties in such a way as to satisfy Onsager reciprocity condition 

 ij jia a= ,   U U
ij jiτ = τ , 

due to which R  satisfies the condition 

 ij jiR R= − . 

Specific forms for the dependencies are established from the conditions of each 
particular problem.  They are often validated using a unit cell of two components.  The 
order of the indices ij  indicates that the j-th component acts on the i-th one. The 
action of all N components (i.e., the mixture) on the i-th one is accomplished through 
summation with respect to j 

 
1

N

Si j ji
j

R R
=

= α∑ . (16) 

From (16), SR  acting on the mixture from all components vanishes: 

 
1 1

0
N N

S i j ij
j i

R R
= =

= α α =∑∑ . (17) 

Similar reasoning applies to a scalar function ijΦ  which describes energy exchange 

between the i-th and j-th components.  As a rule [4], the function is taken in the form 

 ( ) ( )ji ji
ji j i j iP T

ji ji

b c
P P T TΦ = − + −

τ τ
, (18) 

where 

 ij jib b= ,   ij jic c= ,   P P
ij jiτ = τ ,   T T

ij jiτ = τ ,   ji ijΦ = −Φ . 

The flux of energy to the i-th component from all others results from summation: 

 
1

N

Si j ji
j=

Φ = α Φ∑ . 

The energy flux acting on the mixture from all components is zero: 

 
1 1

0
N N

S i j ij
i j= =

Φ = α α Φ =∑∑ . (19) 

The equations (17) and (19) are fundamental to the pair interaction models. 
With the equations (7), (8), (10), (11) and (15) for the macro-scale quantities ρ, U , 

E , ε and P , we can introduce a new type of interaction in which each i-th component 
interacts with the mixture.  Call it a cluster interaction.  In this interaction, momentum 
and energy changes in the i-th component are controlled by the parameters P , ρ, E , 
U , and T  for the mixture and by the parameters iP , ρi, iE , iU , and iT  for the i-th 

component.  To express the cluster interaction, introduce a force tensor and an energy 
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flux.  Let SiF  stand for the tensor of forces to the i-th component from the mixture and  

SiQ  for the energy flux.  They satisfy the cluster interaction conditions 

 
1 1

N N

S i iS i Si
i i

F F F
= =

= α = − α∑ ∑ ,   
1 1

N N

S i iS i Si
i i

Q Q Q
= =

= α = − α∑ ∑ . (20) 

3. CONSERVATION LAWS FOR COMPONENTS 

Write the conservation laws for mass, momentum and energy as 

 ( ) ( ) 0i i i i iU
t

∂ α ρ + ∇ α ρ =
∂

, (21) 

 
3

1

( ) ( ) 0i i i i i i i i ki i kSi i Si
k k

U P U U F R
t x=

∂ ∂α ρ + ∇α + α ρ + α − α =
∂ ∂∑ , (22) 

3

1

( ) ( ( )) ( ) 0i i i i i i i i i kSi i i Si i Si i Si
k k

U P F U Q A
t x=

∂ ∂α ρ ε + ∇ α + ρ ε + α + ∇α − α Φ − α =
∂ ∂∑ . (23) 

Here SiA  is the work of the vector SiR  defined as 

 
1

0.5 ( )
N

Si j ji i j
j

A R U U
=

= α +∑ . 

Add to the equations (21)-(23) an equation of state in the form 

 ( , )i i i iP P E= ρ ,   ( , )i i i iT T E= ρ  

 
and an equation for iε  in terms of iE  and 0.5 2

iU : 

 20.5i i iE Uε = + . (24) 

Compared with [1-3], these equations contain several new quantities, namely a vector 

kSiF  created by elements of the k-th line of SiF , a vector SiQ , and a scalar SiA . 

The macro-scale quantities P , ρ, E , U , ε, and T  characterize a continuum (a 
mixture).  Write mass, momentum and energy conservation laws for the mixture with 
the cluster interaction in the form 

 0U
t

∂ρ + ∇ρ =
∂

, (25) 

 
3

1

( ) ( ) ( ) 0kS
k k

U U U U U P F
t x=

∂ ∂ρ + ∇ ρ + ρ ∇ + ∇ + =
∂ ∂∑ , (26) 

 
3

1

( ) ( ) ( ) 0kS S
k k

U P UF Q
t x=

∂ ∂ρε + ∇ + ρε + + ∇ =
∂ ∂∑ . (27) 
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kSF  contains elements of the k-th line of SF  defining the force to the mixture from all 

components. SF  and SiF , SQ  and SiQ  are related through the cluster interaction 

condition (20). 

4. FORCE TENSOR SiF  

Let i iU U Uδ = −  be velocity oscillations round a mean U .  Substitute 

 i iU U U= + δ  

in the momentum equation for the i-th component (22) and sum with respect to i.  We 
obtain 

      
3

1 1

( ) ( ) ( ) ( ( )) 0
N

i kSi i i ki
i k k

U U U U U P F U U
t x= =

∂ ∂ρ + ∇ ρ + ρ ∇ + ∇ + α + ρ δ δ =
∂ ∂∑∑ .    (28) 

The first four terms in this equation coincide with those in the equation (26).  Equation 
(28) coincides with the equation (26) if 

 
3

1 1

( (2 ( )( ))) 0
N

i kSi i i ki k
i k k

F U U U U
x= =

∂ α + ρ − − =
∂∑∑ . 

Zeroing each of the summands, integrating with respect to kx , and requiring that  

0kSiF =  at iU U=  gives the following equation for kSiF : 

 

 0.5 ( )( )kSi i i k kiF U U U U= − ρ − − . (29) 

5. ENERGY FLUX SiQ  

The specific kinetic energy of velocity oscillations is  

 20.5( )i iH U U= − . (30) 

It follows from the conservation laws for each type of energy at t = const that 

 
1

N

i i i
i

H H
=

ρ = α ρ∑ . (31) 

Substituting (30) into (31) and using (7) and (9) yield 

 2 2

1

0.5 0.5
N

i i i
i

H U U
=

ρ + ρ = α ρ∑ . (32) 

Using (12), express the mixture parameters PU , ρε , Uρε , SQ , kSF , and SA  in 

terms of partial quantities 
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i Si
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and substitute in (27).  We obtain 
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0,
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i i i i i i i i
i

i kSi i i Si i Si i Si i
k k

U P
t

F U Q A B
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∂⎡ α ρ ε + ∇ α + ρ ε +⎢∂⎣
⎤∂+ α + ∇α − α Φ − α + =⎥∂ ⎦

∑
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         (33) 

where 

 ( )
3

1

( ( )( )) 2 ( )i i i i i i i Si i kSi i
k k

B P U U Q F U U
x=

∂= ∇ α + ρ ε − − ∇α − α +
∂∑ . 

Each i-th summand in (33) coincide with the energy equation (23) for the i-th 
component if 0iB = .  Using (24) and (29), rewrite it as 

 ( (( )( ) 2 )) 0i i i i i SiU U P E Q∇ α − + ρ − = . (34) 

Integrating (34) with respect to kx  and finding integration constants from the 

condition that 0SiQ =  at iU U=  give the following expression for the energy flux: 

 0.5( )( )Si i i i iQ U U P E= − + ρ . (35) 

With the equations (29) and (35) for kSiF  and SiQ , the conservation laws (21)-(23) for 

the i-th component are invariant to Galilean transformation and have the property that 
the summation of conservation laws for components with respect to i gives 
corresponding conservation laws for the mixture.  The first of the above two problems 
is thus resolved. 

6. COROLLARIES TO CONSERVATION LAWS 

Before we start to manipulate the conservation laws (21)-(23) and (25)-(27), 
consider components of the total specific energy ε .  Multiply iε  (24) by i iα ρ  and sum 

with respect to i: 

 2

1 1 1

0.5
N N N

i i i i i i i i i
i i i

E U
= = =

α ρ ε = α ρ + α ρ∑ ∑ ∑ . 

After substituting (12) and (32) in this equation and canceling ρ we obtain 

 20.5E U Hε = + + . 

 

46



Thus the total specific energy of the mixture, ε , is the sum of the specific internal 
energy of the mixture, E , the specific kinetic energy of the mixture, 20.5U , and the 
specific non-equilibrium kinetic energy of the mixture, H  (specific energy of velocity 
oscillations).  As velocity relax, H  goes into E . 

Applying identical transformations to the conservation laws (21)-(23) for the i-th 
component and (25)-(27) for the mixture gives equations of motion, equations for the 
specific internal energy, and equations for specific entropy: 
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1
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i i i i i kSi i Si
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∂ ∂∑ . (37) 

 
For V = const and iV = const, and for iη  and iα  independent of thermodynamic 
quantities, the equations 
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Using (6), the equation can be written as 
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TdS T d S
=
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Dividing by dt  gives  
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N
i i
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d SdS
T T
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ρ = α ρ∑  (38) 
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which expresses entropy production for the mixture as the sum of entropy productions 
for components. 

Substituting (37) and (36) in (38) gives the equation for the volume concentration 
of the i-th component: 

 ( ) 2 0i i
i i i i i Si

d
P U U P Q

dt

α + − ∇α − ∇α = . (39) 

This equation closes the conservation laws for the i-th component.  Thus the second 
problem is also resolved. 

7. MODEL PROPERTIES 

The new force SiF  (29) and energy flux SiQ  (35) contain quantities with the 
subscript i which characterize components, or structural elements of a multicomponent 
medium and only two macro-scale quantities, namely density ρ and velocity U  of the 
mixture.  The force SiF  and the flux SiQ  are universal; they do not contain empiric 
constants and do not depend on component characteristics or properties which control 
relaxation times.  This is the property in which the cluster interaction fundamentally 
differs from the pair one. 

The force SiF  and the flux SiQ  vanish as velocity equilibrium establishes.  It 

follows from (39) that at iU U=  the volume concentrations of components remain 
constant along trajectories. 

Conservation laws for a multicomponent medium result from the summation of the 
laws for components.  This property of the model is no more than an argument in its 
favor because the behavior of the i-th component can be described without these laws.  
Equations for the i-th component include the conservation laws (21)-(23), equations 
for SiA , SiF , SiQ , SiR , SiΦ  and iε , the equation (39) for iα , equations of state, and the 

equations (8) and (9) for ρ and U .  So, the number of equations and the number of 
functions are identical in the full system of equations which is closed with no 
additional hypotheses specifying the mixture.  The model presented makes it possible 
to describe concurrently a lot of phenomena in multicomponent media and even 
increase the accuracy of predictions for systems not yet studied experimentally. 
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