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The available models of multicomponent media
(MCM) were described in the most general form in [1, 2].
The following statements made in those works had a
large effect on the development of MCM models: first,
balance conservation equations in their general form
are of little interest for the mechanics of mixtures, and,
second, the main problem in the mathematical simula-
tion of multiphase mixtures is to derive a closed system
of equations both for given physical and chemical prop-
erties of each individual phase and for a given structure
for the mixture as a whole. In the 20–25 years that have
elapsed since the appearance of the aforementioned
publications, many works have been devoted to the
development of particular models based on certain
specifications. So far, the problem of deriving the con-
servation laws for a mixture from those for individual
components, as well as the problem of the closure of the
system of equations for the ith component, remains
unsolved in the general case.

CONSTRAINTS

Each component i of a mixture of N components
conserves the chemical attributes of the substance irre-
spective of its mass and is characterized by the follow-
ing physical parameters: the pressure Pi , the density ρi ,
the specific internal energy Ei , the velocity Ui , the tem-
perature Ti , etc. The thermodynamic parameters obey
the equation of state for the ith component. After the
physical parameters have been changed to the partial
quantities αiPi, αiρi, αiρiUi, αiρiEi , etc., which are con-
tinuous in the (t, xk) space (k = 1, 2, 3), each component
turns out to be a continuous medium in the entire space
occupied by the mixture, so that mass, momentum, and
energy conservation laws can be written for it in the
form of differential equations. Thus, all components of
the mixture are simultaneously present at each point of
the (t, xk) space.

To clarify the essence of the MCM model proposed,
we consider ideal compressible media that are free of
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heat conduction, chemical reactions, and field effects
and have zero deviator of the stress tensor. This consid-
eration does not lead to any loss of generality of the
model, because all the above physical processes can be
incorporated into the conservation laws for the compo-
nents if necessary.

INTERACTION OF COMPONENTS

Type 1. Pairwise interaction. Let the ith and
jth components interact with each other independently
of other components. Then the momentum (Rij) and
energy (Φij) flux densities satisfy the equation

(1)

The order of the subscripts indicates the interaction
direction. We will multiply Eq. (1) by αj and sum over
j under the condition that Rii = 0 and Φii = 0. The result
is marked by the subscript 0:

(2)

Multiplying Eq. (2) by αi , summing over i, and taking
Eq. (1) into account, we obtain

(3)

The quantities Ri0 and Φi0 are the sums of the indepen-
dent intensities of the momentum and energy fluxes
from the ith component to all N components. The pair-
wise interaction is taken into account in the conserva-
tion laws for the ith component in almost all MCM
models (see, e.g., [1–4]).

Type 2. Cluster interaction. In terms of the partial
parameters αiPi, αiρi, αiρiUi, αiρiEi , etc., a virtual con-

Rij R ji, Φij– Φ ji.–= =

α jRij

j 1=

N

∑  = Ri0 R0i, α jΦij

j 1=

N

∑–  = Φi0 Φ0i.–= =

α iRi0

i 1=

N

∑ α iα jRij

j 1=

N

∑
i 1=

N

∑ 0,= =

α iΦi0

i 1=

N

∑ α iα jΦij

j 1=

N

∑
i 1=

N

∑ 0.= =
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tinuum (VC) can be introduced with the parameters

(4)

which are continuous in the space occupied by the mix-
ture. The forces and fluxes associated with the VC will
be marked by the subscript s. The mixture and VC are
nonequilibrium if one of the following conditions is not
fulfilled:

where Pp, Up, and Tp are the equilibrium state parame-
ters. In the process of relaxation, the parameters of the
components and VC change, because U, P, ρ, and E are
determined by Eq. (4). The interaction between the ith
component and the VC will be called the cluster inter-
action. By analogy with Eq. (2), the forces and energy
fluxes associated with the cluster interaction are related
by the equations

(5)

CONSERVATION LAWS

We write the conservation laws for the ith com-
ponent:

(6)

(7)

(8)

In view of Eqs. (2), (3), and (5), the conservation laws

P α iPi, ρ
i 1=

N

∑ α iρi, ρU
i 1=

N

∑ α iρiUi,
i 1=

N

∑= = =

ρE α iρiEi,
i 1=

N

∑=

Pi Pp, Ui Up, Ti T p, P Pp,= = = =

T T p,=

Fksi Fkis, Qsi– Qis, Fk0s– α iFkis,
i 1=

N

∑= = =

Q0s α iQis.
i 1=

N

∑=

∂
∂t
----- α iρi( ) ∇ α iρiUi( )+ 0,=

∂
∂t
----- α iρiUi( ) ∂

∂xk

-------- α iρiUkiUi( )+

+ ∇α iPi
∂

∂xk

-------- α iFksi( ) α iR0i–+ 0,=

∂
∂t
----- α iρiεi( ) ∇ α iUi Pi ρiεi+( )( )+

+
∂

∂xk

-------- α iFksiUi( ) ∇α iQsi α iΦ0i–+ 0.=
for the VC are written in the form

(9)

(10)

(11)

FORCE

We consider the following equation obtained by
substituting Eq. (4) into Eq. (9):

Each term in this sum is equal to zero, because it coin-
cides with the left-hand side of Eq. (6). Thus, the sum-
mation of Eq. (6) yields Eq. (9).

Substituting Eqs. (2)–(5) into Eq. (10), we obtain

(12)

We choose Fksi so that each term in Eq. (12) coincides
with Eq. (7). After simple transformations, we obtain
the following expression for the force Fksi:

(13)

NONEQUILIBRIUM KINETIC ENERGY

We consider the specific total energies of the VC and
the ith component:

(14)

Expressing E and Ei from Eq. (14) and substituting the
result into the fourth of Eqs. (4), we obtain

(15)

where Hi is determined by the equation

(16)

We will call this quantity the nonequilibrium kinetic
energy of the ith component.

∂ρ
∂t
------ ∇ρ U+ 0,=

∂
∂t
----- ρU( ) ∂

∂xk

-------- ρUkU( ) ∇ P
∂

∂xk

-------- Fk0s( )+ + + 0,=

∂
∂t
----- ρε( ) ∇ U P ρε+( )( ) ∂

∂xk

-------- UFk0s( ) ∇ Q0s+ + +  = 0.

∂
∂t
----- α iρi( ) ∇ α iρiUi( )+ 

 
i 1=

N

∑ 0.=

∂
∂t
----- α iρiUi( ) ∂

∂xk

-------- α iρiUkiUi( )+


i 1=

N

∑

+ ∇α iPi
∂

∂xk

-------- α iFkis( ) α iR0i–+ 
 0.=

Fksi 0.5ρi Uki Uk–( ) U Ui–( ).=

ε E 0.5UU H+ , εi+ Ei 0.5UiUi.+= =

ρH α iρiHi,
i 1=

N

∑=

Hi 0.5 U Ui–( )2.=
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ENERGY FLUX
The substitution of Eqs. (2)–(5), (13), and (15) into

Eq. (11) yields

(17)

The condition that the ith term in Eq. (17) coincides
with Eq. (8) is as follows:

(18)

Requiring that the increment of the entropy of the mix-
ture is equal to the sum of the increments of the entro-
pies of the components, we arrive at the equation for
volume concentration:

(19)

Equation (19) closes the system of equations for the
ith component.

New forces Fksi (13) and energy fluxes Qsi (18)
include the parameters of the structural MCM level
(mesolevel) with the subscript i and the barycentric
velocity U, which is a macrolevel parameter. This struc-
ture is typical of mesomechanical equations. These
forces and fluxes vanish at velocity equilibrium.

The technique for obtaining Fksi and Qsi is such that
the conservation laws for the VC are derived by sum-
ming the conservation laws for the components.

∂
∂t
----- α iρiεi( ) ∇ α i U Pi ρiεi+( ) Qsi–( )( )+


i 1=

N

∑

–
∂

∂xk

-------- α iFksiU( ) α iΦ0i– 
 0.=

Qsi 0.5 Pi ρiHi+( ) U Ui–( ).=

Pi

dilnα i

dt
-------------- α iΦsi U Ui–( )ρiEi∇α i–+

α i Ei

Pi

ρi

-----+ 
  ∇ρ i U Ui–( )– 0.=
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COMPLETE EQUATIONS OF THE MODEL

The system of equations governing the behavior of
the ith component includes the conservation laws given
by Eqs. (6)–(8); the second of Eqs. (14); Eq. (19) for the
function αi given by Eq. (19); the equations of state Pi =
Pi(ρi, Ei) and Ti = Ti(ρi, Ei); Eqs. (13) and (18) for the
force Fksi and energy flux Qsi , respectively; the expres-
sion for the intensities of the exchange by the momen-
tum R0i and the energy Φ0i; and Eqs. (4) for P, ρ, and
U. Thus, the complete system of equations for the mix-
ture contains the same number of equations and func-
tions and is closed without any additional hypotheses
specifying the mixture.

ACKNOWLEDGMENTS

This work was supported by the International Sci-
ence and Technology Center, grant no. 1181, and the
Russian Foundation for Basic Research, project
no. 04-01-00050.

REFERENCES

1. A. N. Kraœko, R. I. Nigmatulin, V. K. Starkov, and
L. B. Sternin, Itogi Nauki Tekh., Ser.: Gidromekh. 6, 93
(1973).

2. R. I. Nigmatulin, Fundamentals of Mechanics of Heter-
ogeneous Media (Nauka, Moscow, 1978) [in Russian].

3. N. N. Yanenko, R. I. Soloukhin, A. N. Papyrin, and
V. M. Fomin, Supersonic Two-Phase Flows Under the
Conditions of Velocity Nonequilibrium of Particles
(Nauka, Novosibirsk, 1980) [in Russian].

4. V. F. Kuropatenko, Mat. Model. 1 (2), 118 (1989).

Translated by M. Lebedev


