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Abstract: Analytical solutions of the problem of collapsing of a spherical shell or cavity in an ideal
compressible liquid having a constant density during its motion are constructed. The influence of
the gas located in the cavity on the motion of the cavity boundary is studied. A quantitative
characteristic of energy cumulation is proposed. An expression for energy cumulation in the case
of shell or cavity collapsing is derived. The energy cumulation obtained in this study is compared
with Zababakhin’s results.
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INTRODUCTION

The problem of collapsing of bubbles in a liquid
was first posed because of corrosion of marine pro-
pellers. The first solution of the problem of collapsing
of a spherical bubble in an ideal incompressible liquid
was obtained by Rayleigh in 1917. The problem re-
vival was due to the development of nuclear weapons.
Zababakhin constructed an analytical solution for fo-
cusing of a spherical shell made of an incompressible
material under the action of an initial pulse. It was pos-
sible to publish this solution only in 1965 [1]. Collapsing
of an empty cavity in an ideal compressible liquid was
considered by Hunter [2]. The solution constructed by
Hunter is physically meaningful only in a limited region
far from focusing. A detailed analysis of self-similar so-
lutions for implosion of a cavity in a gas can be found in
the review of Kazhdan and Brushlinskii [3]. Later on,
Zababakhin considered a collapse of a spherical bubble
in a viscous liquid [4]. A detailed review of publica-
tions dealing with collapsing of spherical cavities can
be found in [5].
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CONSERVATION LAWS
AND SIMPLIFYING ASSUMPTIONS

The laws of conservation of mass, momentum,
and energy in an ideal compressible liquid in the La-
grangian coordinates for a spherically symmetric case
have the form

∂V

∂t
− 4π

∂r2u

∂M
= 0, (1)

∂u

∂t
+ 4πr2

∂p

∂M
= 0, (2)

∂

∂t

(
E +

1

2
u2

)
+ 4π

∂r2pu

∂M
= 0. (3)

Here V is the specific volume, p is the pressure, u is
the velocity, r and M are the Eulerian and Lagrangian
coordinates, t is the time, and E is the specific internal
energy. Equations (1)–(3) yield the equation for the
specific internal energy

∂E

∂t
+ p

∂V

∂t
= 0. (4)

Equations (1)–(4) are written in the Lagrangian coor-
dinates. The partial derivatives with respect to time
in these equations are substantial derivatives because
they are taken at a constant coordinate M , i.e., along
the particle trajectory.
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It is known from thermodynamics that the com-
pressibility βs and the velocity of sound C are deter-
mined by the equations

βs = − 1

V

(
∂V

∂p

)
s

, C2 = −V 2

(
∂p

∂V

)
s

.

Thus, the squared velocity of sound is inversely propor-
tional to the compressibility:

C2 = V/βs.

There are no incompressible substances in nature.
However, mechanics deals with a vast class of flows
where the density remains constant in time. The con-
stancy of the flow density is often recognized as incom-
pressibility, i.e., βs = 0 and C2 = ∞. This is misguiding
thinking. The property of the flow is not the property
of the substance.

In a compressible liquid with a finite specific vol-
ume, we always have C2 > 0 at βs > 0, and system
(1)–(3) has three characteristics. The assumption of
incompressibility (βs = 0) means that C = ∞ and sys-
tem (1)–(3) is not hyperbolic. Both results contradict
physical facts. The energy conservation law (3) and the
equation of state are usually not considered in solving
Eq. (2) in the model of an “incompressible” liquid [4].
For this reason, the model has internal contradictions.
It follows from Eq. (4) that E = const at V = const in
an ideal “incompressible” liquid. In this case, however,
it follows from the equation of state p = p(V,E) that
p = const as well. Nevertheless, system (1), (2) at V =
const has several solutions with changing p. Thus, the
model has the following contradiction: on the one hand,
the pressure changes, on the other hand, the pressure
is constant. This contradiction cannot be eliminated
within the framework of the model of an adiabatic “in-
compressible” medium, which included only Eqs. (1)
and (2). However, this contradiction can be eliminated
by assuming that the medium is not adiabatic, i.e., it
contains sources of energy. In this case, Eq. (4) should
be written in the following form:

∂E

∂t
= −p

∂V

∂t
+

∂q

∂t
. (5)

Let us present p and E as a sum of cold and thermal
components:

p = pc(V ) + pth, E = Ec(V ) + Eth,

pc = −dEc

dV
.

Substituting p and E into Eq. (5), we obtain the equa-
tion for the thermal pressure and thermal internal en-
ergy. In the general case, the change in Eth is deter-
mined by the dissipative function q and the work of the
thermal pressure pth with a change in the specific vol-
ume. At V = const, however, the work of the thermal

pressure is equal to zero, and the change in Eth is de-
termined only by the dissipative function q:

∂Eth

∂t
=

∂q

∂t
.

It follows from the theory of equations of state [6] that
the parameters pth and Eth in a liquid are related by the
equation pthV = Γ(V )Eth. At V = const, this equation
is used below in the form

pV 0 = ΓE, (6)

where Γ = const, p = pth, and E = Eth. As p(t,M)
is the solution of Eqs. (1), (2), then the dependence
E(t,M), which follows from Eq. (6), is fairly correct in
each flow. It is determined by the necessity of satisfying
the condition V = const.

One of the known dissipative functions is the vis-
cosity. However, as each substance has a fairly par-
ticular viscosity coefficient, the viscosity is responsible
only for some part of energy dissipation necessary for
maintaining a constant density.

In this work, we confine ourselves to flows where
the specific volume depends neither on M , nor on t, i.e.,
V = const. Simultaneously, the liquid is compressible:
its compressibility βs is not equal to zero.

GENERAL SOLUTION

At V = V0, Eq. (1) reduces to the equation
∂r2u

∂M
= 0, which has the solution

r2u = f(t). (7)

As f is independent of M , then Eq. (7) is valid for all
values of M . On the bubble boundary, where M = 0,
Eq. (7) takes the form

r2intuint = f(t), (8)

where rint is the coordinate of the internal surface and
uint is the velocity of the internal boundary of the bub-
ble. Equations (7) and (8) yield the dependence of the
velocity on the coordinate

u = uintr
2
intr

−2.

Let us express uint from Eq. (8) and substitute it into

the equation of the boundary trajectory
drint
dt

= uint.

Integrating this equation, we obtain

rint =

(
r3int,0 +

t∫
t0

3f(t)dt

)1/3

. (9)

It is seen from Eqs. (8) and (9) that the cavity sur-
face trajectory is completely determined by the func-
tion f(t). If f(t) < 0, then uint < 0; thus, the cavity
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collapses. The time of focusing of the cavity surface tf
is determined from Eq. (9) at rint = 0:

r3int,0 +

tf∫
t0

3f(t)dt = 0. (10)

Let us now consider Eq. (2). Using Eqs. (7) and
(8), we transform Eq. (2) to

∂p

∂M
= − 1

4πr2

(
f

r2r2int

df

drint
− 2f2

r5

)
. (11)

Let us multiply Eq. (11) by dM = 4πr2V −1
0 dr and in-

tegrate the resultant equation from 0 to M (from rint
to r):

p = pint(t)

+
1

V0

[
f

r2int

df

drint

(
1

r
− 1

rint

)
− f2

2

(
1

r4
− 1

r4int

)]
. (12)

In this equation, r depends on t and M ; pint(t) is the
pressure on the cavity surface (at M = 0). The de-
pendence pint(t) is determined either by the gas located
inside the cavity or by the surface tension. If both these
factors are absent, then pint = 0. The limiting pressure
(at r = ∞) is denoted by p∞,

p∞(t) = pint(t)− 1

V0

(
df

drint

f

r3int
− f2

2

1

r4int

)
. (13)

Among the four functions of time, p∞(t), pint(t), rint(t),
and f(t), two arbitrary functions are independent. In
other words, flows with two-functional arbitrariness are
considered.

Using Eq. (13), we rewrite Eq. (12) as

p = p∞(t) +
1

V0

(
df

drint

f

r2intr
− f2

2r4

)
. (14)

Passing from p to E with the use of Eq. (6) and dif-
ferentiating Eq. (14) with respect to t, we obtain the
equation for the energy dissipation rate

∂q

∂t
=

1

Γ

(
V0

dp∞(t)

dt
+

1

r

d2f

dt2
− 2f

r4
df

dt
+

2f3

r7

)
. (15)

Equations (7)–(15) have a general character. The vari-

ables r, u, p, E,
∂p

∂M
, and

∂q

∂t
depend on t and M . All

these dependences acquire a particular character after
two of the four functions of time are defined: p∞(t),
pint(t), rint(t), and f(t).

ENERGY CUMULATION

As there are several types of energy in mechanics
of continuous media (internal, kinetic, cold, thermal,

free energy, etc.), the notion of energy cumulation has
to be specified. For focusing spherical cavities in an
incompressible liquid, Zababakhin proposed the follow-
ing definition of energy cumulation [1, 5, 7, 8]. At the
time t0, the maximum pressure is max p0; at the time
t > t0, its value is max p. The ratio of these pressures
was called energy cumulation in [1, 5, 7, 8]:

K = max p/maxp0. (16)

The pressure reaches the maximum value on the line

described by Eq. (11) at
∂p

∂M
= 0:

rmax = rint

(
2f

/
rint

df

drint

)1/3

. (17)

Substituting rmax into Eq. (14), we obtain

max p = p∞ +
3

V0

(
df

drint

)4/3

f2/3r
−8/3
int 2−7/3. (18)

In the Rayleigh–Zababakhin solution, the level of en-
ergy cumulation unlimitedly increases as rint → 0 with
a power-law exponent n = 3 as

Kp = G1

(
rint,0
rint

)3

, (19)

where G1 = const at rint = 0. This interesting theo-
retical result was not validated by practice: it was im-
possible to reach unlimited energy cumulation in exper-
iments. Zababakhin’s studies [5] showed that theoret-
ical unlimited energy accumulation is not constrained
if the real conditions (including energy dissipation due
to viscosity and thermal conductivity) are taken into
account to the maximum possible extent, and the ques-
tion about the factor limiting energy cumulation re-
mains open. Probably, energy cumulation is limited by
instability [5]. Certainly, instability is a limiting fac-
tor for energy cumulation. Nevertheless, there are also
other reasons.

All dependences Kp(rint) in flows with V = const
were obtained with the energy equation and the equa-
tion of state being ignored. In other words, the energy
that should be additionally spent for satisfying the con-
dition V = const in the flow was ignored.

Let us change the definition of energy cumulation
by introducing a coefficient KE, which is the ratio of
the maximum specific internal energy E to the mean
energy Em averaged over the domain M0:

KE = maxE/E
m
, (20)

where

Em =
Q

M0
, Q =

M0∫
0

EdM. (21)
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The mass M0 is determined at the time t = t0 as the
mass between the cavity boundary and the point rmax 0

determined by Eq. (17), where the energy E(r) reaches
the maximum value.

Let us assume that energy cumulation is unlimited
if K → ∞ as rint → 0. If K → K1, where 1 � K1 < ∞,
then energy cumulation is limited. In all other cases,
there is no cumulation.

The physical essence of this definition of energy cu-
mulation means that the character of the solution en-
sures a significantly greater maximum value than the
mean value at least at one point regardless of the de-
gree of increasing of the mean specific internal energy
with time.

Substituting E from Eqs. (6) and (14) into Eq. (21),
integrating the resultant equation and dividing it by
M0, we determine the specific internal energy averaged
over the mass M0:

Em =
p∞V0

Γ
+

4π

2ΓM0V0

×
[

df

drint

f

r2int
(r2a − r2int) + f2

(
1

ra
− 1

rint

)]
. (22)

Here ra is the external coordinate of a spherical layer
of mass M0. The dependence E(r) is nonmonotonic,
and maxE = V0 max p · Γ−1 is reached on the line
rmax(t) (17).

To find a particular expression for K, we have
to eliminate arbitrariness in choosing the functions
f(t), pint(t), rint(t), and p∞(t). For example, in
the Rayleigh–Zababakhin flow with pint(t) = 0 and
p∞(t) = 0, the function f(t) has the form f =

uint,0r
3/2
int,0r

1/2
int . With the energy-based approach to the

energy cumulation definition in this solution, KE is de-
termined from Eqs. (20), (22), and (18):

KE ≈ G2

(
ra
rint

)
, (23)

where G2 = const at rint = 0. A comparison of Eqs.
(23) and (19) shows that the power-law exponent of the
energy cumulation coefficient decreases by a factor of 3
as rint → ∞.

CLASS OF THE SIMPLEST SOLUTIONS

We take the function f(t) in the form of the power-
law dependence f = drαint, where d and α are constants.
As d = const, then it follows from Eq. (8) at t = t0 that
d = uint,0r

2−α
int,0. Thus, the class of solutions is partly

determined by the function f(t) of the form

f = uint,0r
2−α
int,0r

α
int (24)

with one constant value of α. The chosen form of f
(24) corresponds to

df

dt
= αu2

int,0r
2(2−α)
int,0 r2α−3

int , (25)

uint = uint,0r
2−α
int,0r

α−2
int , u = uint,0r

2−α
int,0r

α
intr

−2. (26)

For complete definition of the class of solutions, we con-
fine ourselves to the case where the pressure on the cav-
ity boundary is equal to zero: pint = 0. In this case,
Eqs. (13) and (24) yield the equation

p∞ =
1

V0
u2
int,0r

2(2−α)
int,0 r

2(α−2)
int

(
1

2
− α

)
. (27)

As the thermal pressure cannot be negative even at in-
finity, there is a constraint on the domain of possible
values of α: α � 1/2. For the class of solutions consid-
ered here, the dependence p(r) has the form

p =
u2
int,0

V0

(
rint,0
rint

)2(2−α)

×
[
1

2

(
1− r4int

r4

)
− α

(
1− rint

r

)]
. (28)

Let us first find the energy cumulation coefficient
Kp. For this purpose, we determine max p. At the point
rmax = rint(2/α)

1/3, Eq. (28) yields

max p =
u2
int,0

2V0

(
rint,0
rint

)2(2−α)

×
[
1− 2α−

(
α

2

)4/3

+ 2α

(
α

2

)1/3]
. (29)

At rint = rint,0, Eq. (29) yields max p0. Substituting
max p and max p0 into Eq. (16), we obtain

Kp ≈ G3

(
rint,0
rint

)2(2−α)

, (30)

where G3 = const at rint = 0. At α = 1/2, the en-
ergy cumulation coefficient Kp (30) coincides with that
obtained by Zababakhin; at α < 1/2, it increases.

Let us now determine the cumulation coefficient by
the energy-based method. We multiply p (28) by V0/Γ,
substitute the resultant expression for E into Eq. (21),
and determine the total internal energy of the mass M0.
Integrating E with respect to the mass M0, we find the
internal energy of this mass

Q =
4πu2

int,0

3ΓV0

(
rint,0
rint

)2(2−α)

F1, (31)

where

F1 =
1

2
(1− 2α)r3a

+ rint

[
3

2
αr2a + r2int

(
3

2

rint
ra

− 1

2
α− 2

)]
. (32)
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At the initial time t = t0, at rint = rint,0, the total
energy of the mass M0 is Q0, and F1 = F10. Dividing
Q by Q0, we obtain

Q

Q0
=

(
rint,0
rint

)2(2−α)
F1

F10
.

It is seen from Eq. (29) that max p → ∞ as rint → 0,
regardless of r; therefore, maxE → ∞, as the total
energy Q with the power-law exponent 2(2− α).

The specific internal energy averaged over the mass
M0 is obtained by dividing Q (31) by M0; maxE is
reached on the line rmax(t) (17) and is expressed via
max p as follows:

maxE =
V0

Γ
max p. (33)

It follows from Eqs. (20), (29), (31), and (33) that

KE =
ΓV0M0

4πF1
. (34)

It is seen from Eqs. (32) and (34) that there is no energy
cumulation at α < 1/2. At α = 1/2, the first term in
F1 vanishes. In this case, first-order cumulation exists
as rint → 0. It should be noted that the solution of the
considered class at α = 1/2 coincides with the Rayleigh–
Zababakhin solution:

pint = 0, p∞ = 0, uint = uint,0

(
r
int,0

rint

)3/2

.

As an example, let us determine the trajectory of
the cavity boundary for the solution in which expres-
sions (24) and (26) take the following form at α = 0:

f = uint,0r
2
int,0, uint = uint,0r

2
int,0r

−2
int . (35)

Substituting f from Eq. (35) into Eq. (9) and integrat-
ing the resultant expression, we obtain

rint = [r3int,0 + 3uint,0r
2
int,0(t− t0)]

1/3.

The instant of focusing is determined from this equation
at rint = 0:

tf = t0 − rint,0
3uint,0

. (36)

With the help of Eq. (36), the equation of the bubble
boundary trajectory is transformed to

rint = rint,0

(
tf − t

tf − t0

)1/3

.

COLLAPSE
OF A GAS-CONTAINING CAVITY

The gas located in the bubble decelerates the mo-
tion of the bubble boundary. We assume that the den-
sity of the gas in the bubble depends only on its vol-
ume: ρ = ρ0(rint,0/rint)

3. We also assume that the gas

is compressed isentropically. The isentrope equation for
an ideal gas yields

pint = pint,0(rint,0/rint)
3γ .

As the liquid already moves toward the center of sym-
metry at t = t0, the value of pint,0 is not arbitrary. It
should be correlated with the state of the liquid on the
cavity surface. To simplify the procedure of construct-
ing the analytical solution, we consider only the case
with γ = 4/3. Let us also assume that p∞ = 0. Thus,
the function f(t) becomes dependent on p∞ and pint. It
is determined from Eq. (13) and has the form

f = uint,0r
2
int,0

√
rint − rint,cav
rint,0 − rint,cav

, (37)

where rint,cav is the minimum value of the cavity ra-
dius at which the velocity of its boundary vanishes.
As p∞ = 0, Eqs. (14) and (37) yield the following
expression at the time t0:

pint,0 =
u2
int,0rint,cav

2V0(rint,0 − rint,cav)
.

From Eqs. (8) and (37), we obtain the dependence
uint(t):

uint = uint,0

(
rint,0
rint

)2
√

rint − rint,cav
rint,0 − rint,cav

. (38)

The cavity boundary trajectory is determined by in-

tegrating the equation
drint
dt

= uint together with

Eq. (38):

A(rint)−A(rint,0) =
uint,0r

2
int,0√

rint,0 − rint,cav
(t− t0),

where

A(rint) =
2

15
(3r2int + 4rintrint,cav + 8r2int,cav)

×√
rint − rint,cav.

Under the condition rint = rint,cav, this equation de-
termines the time instant of the maximum compression
of the gas (time instant when the boundary ceases to
move):

tf = t0 − 2(rint,0 − rint,cav)

15uint,0r2int,0

(3r2int,0 + 4rint,0rint,cav + 8r2int,cav).

At each fixed time instant, the dependence of
the liquid velocity on time is determined by Eqs. (7)
and (37). The dependence p(r, t) is determined from
Eqs. (14) and (37):
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p(r, t) =
u2
int,0r

4
int,0

2V0r2int(rint,0 − rint,cav)

×
[
1

r
− (rint − rint,cav)r

2
int

r4

]
. (39)

The maximum value of p is reached at the value of rmax

satisfying the equation(
rmax

rint

)3

= 4

(
1− rint,cav

rint

)
.

It follows from this equation that rmax < rint at
rint,cav � 0.75rint; thus, the pressure reaches the max-
imum value on the cavity boundary. If the classical
criterion of energy cumulation is applied, it is necessary
to determine the value of max p0, which is reached at
rmax 0 = rint,0[4(1− rint,cav/rint,0)]

1/3. At this point,
we have

max p0 =
u2
int,0r

4/3
int,0

V0(rint,0 − rint,cav)4/3 · 211/3 .
The maximum pressure reached at the boundary at the
time t is

pint =
u2
int,0r

4
int,0rint,cav

2V0(rint,0 − rint,cav)r4int
. (40)

The ratio pint/maxp0 determines the value of Kp. At
the instant of the maximum compression of the gas bub-
ble, we have

Kp = 28/3(rint,0 − rint,cav)
1/3r

8/3
int,0r

−3
int,cav.

Thus, limited energy cumulation is obtained.
Let us now apply the energy-based criterion for

estimating energy cumulation. In accordance with
Eq. (6), E is proportional to p (39); therefore, the max-
imum value of E at rint,cav > 0.75rint is reached on the
cavity boundary. The value of the mean energy Em av-
eraged over the mass M0 is obtained from Eqs. (21) and
(39) after multiplication of p by V0/Γ:

Em =
4πu2

int,0r
4
int,0

2ΓV0M0(rint,0 − rint,cav)r2int

×
[
1

2
(r2a − r2int)+(rint − rint,cav)r

2
int

(
1

ra
− 1

rint

)]
. (41)

Substituting Eqs. (40) and (41) into Eq. (20), we obtain
the expression for KE as rint → rint,cav:

KE =
V0M0

2πrint,cav

×
[(

r3int,cav +
4V0

3π
M0

)2/3

− r2int,cav

]−1

. (42)

It is seen from Eq. (42) that energy cumulation is
limited in accordance with the energy-based criterion.
The difference in the results obtained by applying two
different criteria can be summarized as follows: as
rint,cav decreases, the energy cumulation coefficient Kp

increases as r−3
int,cav, whereas the coefficientKE increases

as r−1
int,cav.

FOCUSING OF THE SHELL

Following [1, 5], we consider focusing of an un-
loaded shell with zero values of pressure on the internal
and external boundaries. This means that the ambient
medium does not perform any work on the shell, and
all internal processes in the shell are determined only by
the initial energy and energy release. At the initial time
t0, the radius rint,0 and velocity uint,0 < 0 of the inter-
nal boundary are defined. In accordance with Eqs. (7)
and (8), the velocity in the shell at the time instant t0
depends on the radius:

u = uint,0(rint,0/r)
2. (43)

All parameters on the external boundary of the
shell will be indicated by the subscript a. Let the shell
mass be given and indicated by Ma. The coordinate of
the external surface ra is related to the coordinate of
the internal surface rint by the equation

ra = (r3int + b)1/3, (44)

where b = [3V0/(4π)]Ma. The initial velocity of the
external boundary is found from Eqs. (43) and (44):

ua0 = uint,0(rint,0/ra0)
2.

At pa = 0 and pint = 0, Eq. (12) takes the form

1

r2int

df

drint

(
1

ra
− 1

rint

)
− f

2

(
1

r4a
− 1

r4int

)
= 0. (45)

Let us now decompose the difference of the fourth-power
terms into the difference of the first-power terms and
an incomplete cube of the sum. As a result, Eq. (45)
transforms to

df

drint
=

f

2

(
r2int
r3a

+
rint
r2a

+
1

ra
+

1

rint

)
.

Let us consider the solution of this equation:

ln f = lnΩ +
1

2
(J1 + J2 + J3 + J4),

where

J1 =

∫
r2intdrint
r3int + b

, J2 =

∫
rintdrint

(r3int + b)2/3
,

J3 =

∫
drint

(r3int + b)1/3
, J4 =

∫
drint
rint

.

The integrals J1 and J4 are tabular integrals, whereas
J2 and J3 are binomial integrals. After integration, we
obtain the dependence

f = Ω(r3int + b)1/6r
1/2
int [(r

3
int + b)

1/3 − rint]
−1/2. (46)

The constant of integration Ω is found at t = t0, where
f0 = uint,0r

2
int,0 and rint = rint,0:

Ω = uint,0r
3/2
int,0[(r

3
int,0 + b)1/3 − rint,0]

1/2(r3int,0 + b)−1/6.
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For the function f(rint(t)), we determine the derivative

df

drint
=

Ω[(r3int + b)4/3 − r4int]

2r
1/2
int [(r

3
int + b)1/3 − rint]3/2(r3int + b)5/6

. (47)

We write Eqs. (46) and (47) in the form

f = r
1/2
int F3(rint, ra),

df

drint
= r

−1/2
int F4(rint, ra), (48)

where

F3 = Ωr1/2a (ra − rint)
−1/2,

(49)

F4 =
1

2
Ωr1/2a D(ra − rint)

−1/2,

D = 1 +
rint
ra

+

(
rint
ra

)2

+

(
rint
ra

)3

. (50)

The dependence p(r) in the shell determined by Eq. (12)

at pint = 0, f (46), and
df

drint
(47) has a maximum

on the line

rmax = 22/3rintD
−1/3. (51)

Substituting rmax together with D, F3, F4, f , b, and
df

drint
from Eqs. (48)–(50) into Eq. (12), we obtain

max p = r−3
int

F3

V0

[
F4(2

−2/3D1/3 − 1)

− 1

2
F3(2

8/3D4/3 − 1)

]
. (52)

At the initial time instant t = t0, the maximum value
of p0 is determined as

max p0 = r−3
int,0

F30

V0

[
F40(2

−2/3D
1/3
0 − 1)

− 1

2
F30(2

8/3D
4/3
0 − 1)

]
.

As rin → 0, the variables F3, F4, and D are limited;
thus, we have

Kp ≈ G4

(
rint,0
rint

)3

, (53)

where G4 = const at rint = 0. Energy cumulation oc-
curs because the cumulation coefficient Kp tends to in-
finity with a power-law exponent equal to 3. This result
coincides with that obtained in [1, 5, 7, 8], though it was
obtained by a different method.

During the shell motion period from t0 to tf, its
thermal energy increases. Integrating E with respect to
M from M = 0 to M0 = Ma, we obtain the expression
for the internal energy of the shell

Q = F5r
−2
int , (54)

where

F5 =
πΩ2ra

3V0Γ(ra − rint)

[
r2a

(
D + 8

r3int
r3a

)
− r2int(D + 8)

]
.

As rint → 0, the value of F5 tends to a constant value:

lim
rint→0

F5 =
πΩ2r2a
3V0Γ

.

Therefore, Q → ∞ as rint → 0 and

Q

Q0
≈ F6

(
rint,0
rint

)2

, (55)

where F6 = const. In other words, to satisfy the con-
dition V = const in the flow, it is necessary to spend
a lot of energy. As the shell is a mechanically insu-
lated system, there arises the following question: How
can energy with a prescribed profile be imparted to the
shell? Methods of energy input to the system are out-
side the scope of this work. It is important that the
amount of energy imparted to the shell increases with
time and tends to infinity in accordance with Eq. (55).
As the internal energy is thermal energy, the temper-
ature increases as this energy increases, and emission
becomes essential after a certain time. All attempts to
further increase the shell energy will be accompanied
by its reduction owing to outward emission of radiation
from the shell.

Formally, applying the energy-based criterion, we
can conclude that theoretically energy cumulation ex-
ists, though its order differs from than predicted
in [1, 5, 7, 8].

The mean value Em is determined by dividing Q
(54) by the shell mass Ma. Substituting max p from
Eq. (52) into Eq. (33) and then maxE and Em into
Eq. (20), we obtain

KE ≈ G5

(
rint,0
rint

)
,

where G5 = const. This energy cumulation coefficient
differs by two orders of magnitude from Kp (53) ob-
tained by the classical method.

CONCLUSIONS

1. The model of an incompressible viscous liquid
was developed by Navier and Stokes in 1820–1850. For
spherically symmetric motion without viscosity, it re-
duces to Eqs. (2) and (9). The model contained nei-
ther the energy equation, nor the equation of state,
which were added many years later. Owing to its
ability to construct analytical solutions, the model be-
came very popular among mechanics and mathemati-
cians and still is.
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2. The complete model of mechanics of continuous
media (Euler–Helmholtz equations (1)–(3)) allows one
to construct solutions with a constant density. Energy
input is required to maintain a constant density in the
liquid. This fact has been ignored until recently.

3. The new definition of energy cumulation, which
is given in this paper and takes into account additional
energy expenses, shows that cumulation drastically de-
creases in a number of flows and even vanishes in some
of them.

This work was supported by the Russian Founda-
tion for Basic Research (Grant No. 13-01-00072).
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