УДК539.4.25

О ТОЧНОСТИ РАСЧЕТА ОТКОЛЬНОГО РАЗРУШЕНИЯ

© 2002 г. В. Ф. Куропатенко, И. Р. Макеева

Всероссийский научно-исследовательский институт технической физики, Снежинск Поступила в редакцию 20.12.2000

Приводится аналитическое решение задачи, моделирующей воздействие продуктов взрыва на конденсированное вещество. В результате взаимодействия волны разрежения с ударной волной, а затем с встречной волной разрежения, образовавшейся после выхода ударной волны на свободную поверхность, происходит разрушение вещества в плоскости, параллельной свободной поверхности. Аналитическое решение используется для проверки точности численных методик при расчете массы отколовшегося вещества. Приведены результаты решения этой задачи по различным разностным методикам.

введение

Существует много различных моделей, описывающих отклик вещества на динамическое воздействие, в том числе моделей прочности и разрушения. Каждая модель содержит адиабатическое ядро, в котором присутствует только шаровая часть тензора напряжений, т.е. давление. Общая погрешность математическое модели может быть представлена в виде суммы погрешностей физической модели, погрешности аппроксимации адиабатического ядра и погрешности аппроксимации девиатора:

$$\Delta = \Delta^{\Phi}_{MOM} + \Delta^{M}_{a.s} + \Delta^{M}_{m}.$$

При расчетах реальных задач сильные, слабые и контактные разрывы многократно взаимодействуют, и может произойти необратимое накопление погрешностей из-за осцилляций и дистракции разрывов, что в итоге дает существенное различие между характеристиками реального физического процесса и его математического образа. Для адекватного описания поведения материалов необходима высокая точность как кинетических моделей, так и численных методов с оптимальными дистракцией и не монотонностью. Для оценки погрешности аппроксимации адиабатического ядра было построено аналитическое решение задачи, моделирующей воздействие продуктов взрыва на конденсированное вещество. В результате взаимодействия волны разрежения с ударной волной, а затем с встречной волной разрежения, образовавшейся после выхода ударной волны на свободную поверхность, происходит разрушение вещества в плоскости, параллельной свободной поверхности.

1. АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ЗАДАЧИ ОБ ОТКОЛЕ

Пусть движение вещества и изменение его термодинамических характеристик описывается системой законов сохранения в виде

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho U}{\partial x} = 0, \qquad (1)$$

$$\rho \frac{\partial U}{\partial t} + \rho U \frac{\partial U}{\partial x} + \frac{\partial P}{\partial x} = 0, \qquad (2)$$

$$\frac{\partial E}{\partial t} + P \frac{\partial V}{\partial t} = 0, \qquad (3)$$

$$P = f(V, E), \tag{4}$$

$$\frac{\partial x}{\partial t} = U, \tag{5}$$

где V – удельный объем, U – массовая скорость, P – давление, E – удельная внутренняя энергия, t – время, x – эйлерова координата.

На фронте ударной волны (УВ) справедливы соотношения Гюгонио–Ренкина:

$$V_{+} - V_{-} W + (U_{+} - U_{-}) = 0, (6)$$

$$(U_{+} - U_{-})W - (P_{+} - P_{-}) = 0, \tag{7}$$

$$E_{+} - E_{-} + 0.5(P_{+} + P_{-})(V_{+} - V_{-}) = 0, \qquad (8)$$

где величины с индексом "–" характеризуют состояние вещества перед фронтом разрыва, а с индексом "+" – за фронтом разрыва; W = dm/dt – скорость распространения УВ в лагранжевых координатах; D = dx/dt – скорость распространения УВ в эйлеровых координатах.

Рассмотрим систему, изображенную на рис. 1.

Пусть при t = 0 характеристики вещества имеют следующие значения: $0 \le x \le x_2$, $t_0 = 0$, $\rho_0 = 1$, $P_0 = 0$, $U_0 = 0$, $E_0 = 0$, $C_0 = 1$. Пусть правая граница (ПГ) системы является свободной (P = 0). На ле-

О ТОЧНОСТИ РАСЧЕТА ОТКОЛЬНОГО РАЗРУШЕНИЯ

Рис. 1. Рассматриваемая система.

вой границе (ЛГ) системы зададим комбинированное условие $U_{\Pi\Gamma}(t)$, обеспечивающее условия появления откола в одной точке. Зависимость $U_{\Pi\Gamma}(t)$ изображена на рис. 2.

Уравнение состояния возьмем в виде

$$P = (\gamma - 1)\rho E + C_{0k}^{2}(\rho - \rho_{0k})$$
(9)

при у = 3. Перейдем к безразмерным величинам

$$\overline{P} = \frac{P}{\rho_{0k}C_{0k}^2}, \quad \overline{E} = \frac{E}{C_{0k}^2}, \quad \overline{\rho} = \frac{\rho}{\rho_{0k}},$$
$$\overline{U} = \frac{U}{C_{0k}}, \quad \overline{C} = \frac{C}{C_{0k}}.$$

В дальнейшем для удобства опустим черту.

Решение состоит из нескольких областей (рис. 1).

Область *А*. В области *А* течение за фронтом УВ является стационарным. Параметры течения определяются соотношениями Гюгонио-Ренкина на сильном разрыве и граничным условием $U_{\rm Л\Gamma} = U_1 = {\rm const.}$ Для данного уравнения состояния

$$P_1 = U_1^2 + \left[\left(U_1^2 \right)^2 + U_1^2 \right]^{1/2}, \tag{10}$$

$$E_1 = 0.5U_1^2$$
, $\rho_1 = \frac{P_1 + 1}{2E_1 + 1}$, $c_1 = \left(\frac{3P_1 + 1}{\rho_1}\right)^{0.5}$, (11)

$$f_1(s) = (1+3P_1)\rho_1^{-3} - 1.$$
 (12)

Скорость УВ

$$D = U_1 + (1 + U_1^2)^{1/2}, \quad W = D.$$
 (13)

Время выхода ударной волны на свободную границу пластины,

$$t_2 = x_2/D_1. (14)$$

ХИМИЧЕСКАЯ ФИЗИКА том 21 № 9 2002

Рис. 2. Зависимость $U_{\Pi\Gamma}(t)$.

Время смены граничного условия, t_1 , определим так. Проведем характеристику первого семейства из точки t_2 , x_2 , так чтобы она прошла через точку t_1 , x_1 :

$$x_1 = x_2 + (U_1 + C_1)(t_1 - t_2).$$
 (15)

Значения t_1 и x_1 связаны условием

$$x_1 = U_1 t_1, (16)$$

а значения t_2 , x_2 – условием

$$x_2 = Dt_2. \tag{17}$$

Из (15)-(17) следует

$$t_1 = t_2 \frac{U_1 + C_1 - D}{U_1}, \quad x_1 = t_2(U_1 + C_1 - D).$$
 (18)

Область Б. В области Б находится волна разрежения. Решение определяется уравнениями

$$\frac{x - x_{\Pi\Gamma}}{t - t_{\Pi\Gamma}} = U + C, \quad U - C = U_1 - C_1.$$
(19)

Из (19) следует, что в области Б

$$U = \frac{1}{2} \left(\frac{x - x_{\Pi\Gamma}}{t - t_{\Pi\Gamma}} + U_1 - C_1 \right),$$

$$C = \frac{1}{2} \left(\frac{x - x_{\Pi\Gamma}}{t - t_{\Pi\Gamma}} - U_1 + C_1 \right),$$

$$P(x, t) = \frac{1}{3} \left[\rho_1 C_1^2 \left(\frac{C(x, t)}{C_1} \right)^3 - 1 \right],$$
(21)

$$\rho(x,t) = \frac{\rho_1}{C_1} C(x,t),$$

$$E(x,t) = \frac{1}{2} \left[\frac{P(x,t)+1}{\rho(x,t)} - 1 \right].$$
 (22)

Граничное условие на ЛГ в промежутке $t_1 \le t \le t_3$ подбирается в виде функции $\hat{U} = F(t)$ так, чтобы имитировать динамическое импульсное воздействие на вещество. Это может быть либо воздействие излучения, либо воздействие продуктов взрыва. При этом траектория левой границы имеет вид

$$x_{\Pi\Gamma}(t) = x_1 + \int_{C} F(t) dt.$$
 (23)

В некоторой точке 3 на левой границе скорость принимает значение $U_3 = F(t_3)$. Уравнение характеристики 2-4 имеет вид

$$x = x_2 + (U_1 - C_1)(t - t_2).$$
(24)

На ней справедливы уравнения (19)-(22).

Область В. В точке x₂, t₂ происходит распад разрыва, в результате которого в момент t₂ свободная граница при $P_{\Pi\Gamma} = 0$ приобретает скорость U_{ПГ2}, а влево пройдет центрированная волна разрежения (область В). В момент t₂ после распада разрыва значение скорости ПГ U_{ПГ2} удовлетворяет уравнению

$$U_{\Pi\Gamma2} + C_{\Pi\Gamma} = U_1 + C_1. \tag{25}$$

Значение Спг находится из уравнения, связываюшего *C* с *P*:

$$C^{2} = C_{1}^{2} \left[\frac{1}{\rho_{1} C_{1}^{2}} (3P+1) \right]^{2/3}.$$
 (26)

При P = 0 из (26) следует

$$C_{\rm III} = \left(\frac{C_1}{\rho_1}\right)^{1/3}$$
. (27)

Таким образом, характеристика 2-5 (крайняя правая характеристика центрированной волны разрежения) имеет вид

$$x - x_2 = (U_{\Pi \Gamma 2} + C_{\Pi \Gamma})(t - t_2).$$
(28)

На ней

$$U - C = U_{\Pi \Gamma 2} - C_{\Pi \Gamma}.$$
 (29)

Характеристики второго семейства в области В определяются уравнением

$$U - C = \frac{x - x_2}{t - t_2}.$$
 (30)

Слева в эту область приходят α-характеристики из области Б с уравнениями

$$U + C = \frac{x - x_2}{t - t_{\Pi\Gamma}} + \frac{t_2 - t_{\Pi\Gamma}}{t - t_{\Pi\Gamma}} (U_1 + C_1).$$
(31)

Из (30), (31) следуют уравнения для величин в области В:

$$U(x,t) = \frac{1}{2} \left[\frac{x - x_2}{t - t_2} + \frac{x - x_2 + (t_2 - t_{\Pi\Gamma})(U_1 + C_1)}{t - t_{\Pi\Gamma}} \left(\frac{F(t) - U_1 + C_1}{C_1} \right)^2 \right],$$

$$C(x,t) = \frac{1}{2} \left[\frac{x - x_2 + (t_2 - t_{\Pi\Gamma})(U_1 + C_1)}{t - t_{\Pi\Gamma}} \left(\frac{F(t) - U_1 + C_1}{C_1} \right)^2 - \frac{x - x_2}{t - t_2} \right].$$
(32)

Величины P(x, t), $\rho(x, t)$, E(x, t) в области B находятся по уравнениям (21), (22) после подстановки в них C(x, t), полученного из (32).

Найдем теперь зависимость P(t) на характеристике 2-5. С помощью (25) преобразуем (29) к виду

$$U - C = U_1 + C_1 - 2C_{\Pi\Gamma}.$$
 (33)

Решая систему уравнений (31) и (33), получим выражение для С вдоль характеристики 2-5:

$$C = (34)$$

$$= \frac{1}{2} \left[\frac{x - x_2}{t - t_{\Pi\Gamma}} + \frac{t_2 - t_{\Pi\Gamma}}{t - t_{\Pi\Gamma}} (U_1 + C_1) - (U_1 + C_1) + 2C_{\Pi\Gamma} \right],$$

которое с помощью (32) и (28) преобразуем к виду

$$C_{25}(t) = C_{\Pi\Gamma} \frac{t_2 - t_{\Pi\Gamma}}{t - t_{\Pi\Gamma}}.$$
 (35)

Подставим полученную зависимость C(t) в выражение (32). В результате получим зависимость P(t) вдоль характеристики 2–5 в виде

$$P(t) = \frac{1}{3} \left[\frac{\rho_1}{C_1} \left(C_{\Pi \Gamma} \frac{t_2 - t_{\Pi \Gamma}}{t - t_{\Pi \Gamma}} \right)^3 - 1 \right].$$
(36)

При $t = t_2$ эта формула дает

$$P(t_2) = \frac{1}{3} \left(\frac{\rho_1 C_{\Pi\Gamma}^3}{C_1} - 1 \right).$$
(37)

Из (28) и (37) следует, что $P(t_2) = 0$. При $t \longrightarrow \infty$ из (36) следует, что $\lim P(t) = -1/3$. Дифференцируя

P(t), вдоль характеристики 2–5 получим

$$\frac{dP}{dt} = -\left(\frac{\rho_1}{C_1}\right)^{1/3} \frac{(t_2 - t_{\rm JIF})^3}{(t - t_{\rm JIF})^4} < 0.$$

Это означает, что вдоль характеристики 2-5 при $t > t_2$ давление P(t) убывает. Уменьшаясь, давление может достигнуть значения $P_{\sigma} < 0$, при котором в веществе образуется трещина. Если $P_{\sigma} > -1/3$, то произойдет разрушение, если же $P_{\sigma} \leq -1/3$, то разрушения не будет. Обозначим эту точку номером 5.

Найдем момент разрушения из (34) при $P = P_{\sigma}$ в виде

$$t_5 = t_{\Pi\Gamma} + (t_2 - t_{\Pi\Gamma})(3P_{\sigma} + 1)^{-1/3}.$$
 (38)

ХИМИЧЕСКАЯ ФИЗИКА том 21 **№** 9 2002 Из уравнений (28), (32) для характеристики 2-5 найдем x₅:

$$x_5 = x_2 + (U_1 + C_1 - 2C_{\Pi\Gamma})(t_5 - t_2).$$
(39)

В точке *t*₅, *x*₅ скорость и скорость звука принимают значения

$$C_{5} = C_{\sigma} = \left[\frac{C_{1}}{\rho_{1}}(3P_{\sigma}+1)\right]^{1/3} = C_{\Pi\Gamma}(3P_{\sigma}+1)^{1/3}$$

$$U_{5} = U_{1} + C_{1} + C_{5} - 2C_{\Pi\Gamma}.$$
(40)

Определим координаты точки 4 – точки пересечения α-характеристики 3-4-5 и β-характеристики 2-4:

$$x_4 - x_2 = (U_1 - C_1)(t_4 - t_2),$$

$$x_5 - x_4 = (U_5 + C_5)(t_5 - t_4).$$
(41)

Сложив оба уравнения, получим

$$x_5 - x_2 = (U_1 - C_1)t_4 - (U_5 + C_5)t_4 - (U_1 - C_1)t_2 + (U_5 + C_5)t_5.$$

Подставим x_5 из (39) в это уравнение и выразим t_4 :

$$t_4 = t_2 + (t_5 - t_2) \frac{U_5 + C_5 - U_{\Pi \Gamma 2} + C_{\Pi \Gamma}}{U_5 + C_5 - U_1 + C_1}.$$
 (42)

Значение x_4 находится по найденному t_4 из (41).

Режим точечного откола. В момент разрушения давление в точке 5 скачком увеличится с $P = P_{\sigma} < 0$ до P = 0, а в обе стороны от точки разрушения пойдут ударные волны с начальной амплитудой $\Delta P = -P_{\sigma}$. Чтобы не допустить разрушения в точках, отличных от точки 5, нужно, чтобы при $t > t_3$ краевое условие генерировало волну сжатия или хотя бы постоянное течение в области \mathcal{I} . Чтобы выполнить это условие, определим вначале координаты точки 3.

Найдем координаты точки 3 из уравнения характеристики 3-4-5

$$x_5 - x_3 = (U_5 + C_5)(t_5 - t_3) \tag{43}$$

и уравнения левой границы (23). В момент t_3 скорость левой границы имеет значение $U_3 = F(t_3)$. Это значение задается в качестве краевого условия при $t \ge t_3$.

Свободная граница. На свободной границе 2–6 P = 0. На нее же выходят α -характеристики из области *Б*:

$$\frac{x - x_{\Pi\Gamma}}{t - t_{\Pi\Gamma}} = U + C. \tag{44}$$

Поскольку на ПГ при P = 0

$$C_{\rm IIIr} = \left(\frac{C_1}{\rho_1}\right)^{1/3} = \text{ const,}$$
(45)

то из (44) следует зависимость $U_{\Pi\Gamma}(x, t)$:

$$U_{\Pi\Gamma} = \frac{x - x_{\Pi\Gamma}}{t - t_{\Pi\Gamma}} - C_{\Pi\Gamma}.$$
 (46)

ХИМИЧЕСКАЯ ФИЗИКА том 21 № 9 2002

Поскольку

$$U_{\Pi\Gamma} = \frac{dx}{dt},$$

то траектория ПГ определится уравнением

$$\frac{dx}{dt} - \frac{x}{t - t_{\Pi\Gamma}} = -C_{\Pi\Gamma} - \frac{x_{\Pi\Gamma}}{t - t_{\Pi\Gamma}}.$$
(47)

Его решение имеет вид

$$x_{\Pi\Gamma} = x_{\Pi\Gamma} + (U_1 + C_1)(t - t_{\Pi\Gamma}) + C_{\Pi\Gamma}(t - t_{\Pi\Gamma}) \ln \frac{x_2 - x_{\Pi\Gamma}}{t - t_{\Pi\Gamma}}.$$
(48)

Подставив $x_{\Pi\Gamma}(t)$ в (46) получим уравнение для $U_{\Pi\Gamma}(t)$:

$$U_{\Pi\Gamma} = U_1 + C_1 - C_{\Pi\Gamma} \left(1 + \ln \frac{x_2 - x_{\Pi\Gamma}}{t - t_{\Pi\Gamma}} \right).$$
(49)

Область Γ . В каждой точке x, t области Γ пересекаются характеристики первого и второго семейств:

$$U_{\Gamma} + C_{\Gamma} = \frac{x_{\Gamma} - x_{\Pi\Gamma}}{t_{\Gamma} - t_{\Pi\Gamma}},$$
(50)

$$U_{\Gamma} - C_{\Gamma} = \frac{x_{\Gamma} - x_k}{t_{\Gamma} - t_k},\tag{51}$$

где точка x_k , t_k лежит на правой границе. Значения x_k , t_k удовлетворяют уравнению (48) в виде

$$x_{k} = x_{\Pi\Gamma} + (t_{k} - t_{\Pi\Gamma}) \left(U_{1} + C_{1} - C_{\Pi\Gamma} \ln \frac{t_{k} - t_{\Pi\Gamma}}{t_{2} - t_{\Pi\Gamma}} \right).$$
(52)

Точка x_{Γ}, t_{Γ} в области
 Γ связана с точкой x_k, t_k уравнением

$$\frac{x_{\Gamma} - x_{\Pi\Gamma}}{t_{\Gamma} - t_{\Pi\Gamma}} = U_{\Pi\Gamma}(t_k) - C_{\Pi\Gamma}.$$
(53)

Отсюда следует

$$x_{\Gamma} = x_{\Pi\Gamma} + (U_1 + C_1)(t_k - t_{\Pi\Gamma}) + C_{\Pi\Gamma}(t_k - t_{\Pi\Gamma}) \frac{t_2 - t_{\Pi\Gamma}}{t_k - t_{\Pi\Gamma}} + C_{\Pi\Gamma}(t_k - t_{\Pi\Gamma}) \frac{t_2 - t_{\Pi\Gamma}}{t_k - t_{\Pi\Gamma}} + C_{\Pi\Gamma}(t_k - t_{\Pi\Gamma}) \frac{t_2 - t_{\Pi\Gamma}}{t_k - t_{\Pi\Gamma}} + C_{\Pi\Gamma}(t_k - t_{\Pi\Gamma}) \frac{t_2 - t_{\Pi\Gamma}}{t_k - t_{\Pi\Gamma}} + C_{\Pi\Gamma}(t_k - t_{\Pi\Gamma}) \frac{t_2 - t_{\Pi\Gamma}}{t_k - t_{\Pi\Gamma}} + C_{\Pi\Gamma}(t_k - t_{\Pi\Gamma}) \frac{t_2 - t_{\Pi\Gamma}}{t_k - t_{\Pi\Gamma}} + C_{\Pi\Gamma}(t_k - t_{\Pi\Gamma}) \frac{t_2 - t_{\Pi\Gamma}}{t_k - t_{\Pi\Gamma}} + C_{\Pi\Gamma}(t_k - t_{\Pi\Gamma}) \frac{t_2 - t_{\Pi\Gamma}}{t_k - t_{\Pi\Gamma}} + C_{\Pi\Gamma}(t_k - t_{\Pi\Gamma}) \frac{t_2 - t_{\Pi\Gamma}}{t_k - t_{\Pi\Gamma}} + C_{\Pi\Gamma}(t_k - t_{\Pi\Gamma}) \frac{t_2 - t_{\Pi\Gamma}}{t_k - t_{\Pi\Gamma}} + C_{\Pi\Gamma}(t_k - t_{\Pi\Gamma}) \frac{t_2 - t_{\Pi\Gamma}}{t_k - t_{\Pi\Gamma}} + C_{\Pi\Gamma}(t_k - t_{\Pi\Gamma}) \frac{t_2 - t_{\Pi\Gamma}}{t_k - t_{\Pi\Gamma}} + C_{\Pi\Gamma}(t_k - t_{\Pi\Gamma}) \frac{t_2 - t_{\Pi\Gamma}}{t_k - t_{\Pi\Gamma}} + C_{\Pi\Gamma}(t_k - t_{\Pi\Gamma}) \frac{t_2 - t_{\Pi\Gamma}}{t_k - t_{\Pi\Gamma}} + C_{\Pi\Gamma}(t_k - t_{\Pi\Gamma}) \frac{t_2 - t_{\Pi\Gamma}}{t_k - t_{\Pi\Gamma}} + C_{\Pi\Gamma}(t_k - t_{\Pi\Gamma}) \frac{t_2 - t_{\Pi\Gamma}}{t_k - t_{\Pi\Gamma}} + C_{\Pi\Gamma}(t_k - t_{\Pi\Gamma}) \frac{t_2 - t_{\Pi\Gamma}}{t_k - t_{\Pi\Gamma}} + C_{\Pi}(t_k - t_{\Pi\Gamma}) \frac{t_2 - t_{\Pi\Gamma}}{t_k - t_{\Pi\Gamma}} + C_{\Pi}(t_k - t_{\Pi\Gamma}) \frac{t_2 - t_{\Pi\Gamma}}{t_k - t_{\Pi\Gamma}} + C_{\Pi}(t_k - t_{\Pi\Gamma}) \frac{t_2 - t_{\Pi\Gamma}}{t_k - t_{\Pi\Gamma}} \frac{t_2 - t_{\Pi\Gamma}}{t_k - t_{\Pi\Gamma}} + C_{\Pi}(t_k - t_{\Pi\Gamma}) \frac{t_2 - t_{\Pi\Gamma}}{t_k - t_{\Pi\Gamma}} \frac{t_2 - t_{\Pi\Gamma}}{t_k -$$

$$+ (t_{\Gamma} - t_{k}) \left(U_{1} + C_{1} - 2C_{\Pi\Gamma} - C_{\Pi\Gamma} \ln \frac{t_{k} - t_{\Pi\Gamma}}{t_{2} - t_{\Pi\Gamma}} \right) = (54)$$
$$= x_{\Pi\Gamma} + (t_{\Gamma} - t_{\Pi\Gamma}) \left(U_{1} + C_{1} - C_{\Pi\Gamma} \ln \frac{t_{k} - t_{\Pi\Gamma}}{t_{2} - t_{\Pi\Gamma}} \right) - 2C_{\Pi\Gamma} (t_{\Gamma} - t_{k}).$$

После того как x_{Γ} и x_k выражены через t_k , значения U_{Γ} и C_{Γ} находятся по формулам

$$U_{\Gamma} = \frac{1}{2} \left[\frac{x_{\Gamma}(t_k) - x_{\Pi\Gamma}}{t_{\Gamma} - t_{\Pi\Gamma}} + \frac{x_{\Gamma}(t_k) - x_k(t_k)}{t_{\Gamma} - t_k} \right], \quad (55)$$

Рис. 3. Зависимость $P_{min}(m)$; l – аналитическое решение, 2 – расчет по методу [1].

$$C_{\Gamma} = \frac{1}{2} \left[\frac{x_{\Gamma}(t_k) - x_{J\Gamma}}{t_{\Gamma} - t_{J\Gamma}} - \frac{x_{\Gamma}(t_k) - x_k(t_k)}{t_{\Gamma} - t_k} \right].$$
(56)

Значения P_{Γ} , ρ_{Γ} , E_{Γ} находятся с помощью (21), (22).

Откол. В момент t_5 давление в точке 5 достигает значения, при котором происходит разрушение. Определим отколовшуюся массу

$$m = \int_{x_{\rm T}}^{x_{\rm TT}(t_5)} \rho_{\rm T}(x) dx.$$
 (57)

Из (21) следует, что в области Г

$$\rho_{\Gamma} = \frac{\rho_1}{C_1} C_{\Gamma}(t_k).$$
(58)

Подставим $\rho_{\Gamma}(t_k)$ в (57) и перейдем к новой переменной интегрирования – t_k . Значение $dx = \frac{dx_{\Gamma}}{dt_k} dt_k$ получим дифференцированием (54):

$$dx = C_{\Pi\Gamma} \left(2 - \frac{t_k - t_{\Pi\Gamma}}{t_5 - t_{\Pi\Gamma}} \right) dt_k.$$
(59)

В результате интегрирования с учетом (36) получим

$$n_{\text{отк}}(t_5) = \frac{(t_5 - t_2)(t_2 - t_{\text{ЛГ}})}{C_{\text{ПГ}}(t_5 - t_{\text{ЛГ}})}.$$
 (60)

Зависимость минимального P от m. Минимальное P достигается на характеристике 2–5. Чтобы убедиться в этом, рассмотрим производные $\partial P/\partial m$ справа и слева от линии 2–5.

В области Г

r

$$\frac{\partial P}{\partial m} = \frac{1}{\rho} \frac{\partial P}{\partial x} = \frac{1}{\rho} \frac{dP}{dC} \frac{\partial C}{\partial x}.$$
 (61)

Запишем (56) с помощью (53) и (54) в виде

$$C_{\Gamma} = C_{\Pi \Pi} \frac{t_k - t_{\Pi \Gamma}}{t_{\Gamma} - t_{\Pi \Gamma}}.$$
 (62)

Поскольку t_k при фиксированных t_{Γ} зависит от x_{Γ} , то

$$\frac{dC_{\Gamma}}{dx} = \frac{dC_{\Gamma}}{dt_k} \frac{dt_k}{dx_{\Gamma}} = \frac{C_{\Pi\Gamma}}{t_{\Gamma} - t_{\Pi\Gamma}} \left(\frac{dx_{\Gamma}}{dt_k}\right)^{-1}.$$
 (63)

Из (54) следует

$$\frac{dx_{\Gamma}}{dt_{k}} = C_{\Pi\Gamma} \left(2 - \frac{t - t_{\Pi\Gamma}}{t_{k} - t_{\Pi\Gamma}} \right).$$
(64)

Обозначим

$$\xi = \frac{t - t_{\Pi\Gamma}}{t_k - t_{\Pi\Gamma}}.$$
(65)

На ПГ $\xi = 0$, так как, $t = t_k$. Максимальное значение ξ достигается на характеристике 2–5:

$$\xi_{25} = \frac{t - t_{\Pi\Gamma}}{t_2 - t_{\Pi\Gamma}}.$$
 (66)

Из (64), (66) следует

$$\frac{dx_{\Gamma}}{dt_k} \ge C_{\Pi\Gamma}(2 - \xi_{25}). \tag{67}$$

Из (38) следует, что

$$\xi_{25} = \frac{t - t_{\Pi\Gamma}}{t_2 - t_{\Pi\Gamma}} = \frac{1}{(3P_{25} + 1)^{1/3}}.$$
 (68)

Поскольку

$$P_6 \le P_{25} \le 0, \tag{69}$$

$$\leq \xi_{25} \leq \xi_6. \tag{70}$$

Следовательно, $dx_{\Gamma}/dt_k \ge C_{\Pi\Gamma}(2 - \xi_6)$. Реально P_6 достигает значений 0.04–0.05. Это значит, что max $\xi_6 \approx 1.04$ –1.05. Подставив эти значения в (68), получим, что

1

$$dx_{\Gamma}/dt_k \ge 0. \tag{71}$$

Таким образом, минимальное значение P достигается на характеристике 2-5.

Это давление зависит от t в соответствии с (36):

$$\min P = \frac{1}{3} \left[\frac{\rho_1}{C_1} \left(C_{\Pi \Gamma} \frac{t_2 - t_{\Pi \Gamma}}{t - t_{\Pi \Gamma}} \right)^3 - 1 \right].$$
(72)

Масса вещества, находящегося правее этой характеристики, определяется уравнением (60):

$$m = \frac{\rho_1 C_{\Pi\Gamma}^2 (t - t_2) (t_2 - t_{\Pi\Gamma})}{C_1 (t - t_{\Pi\Gamma})}.$$
 (73)

ХИМИЧЕСКАЯ ФИЗИКА том 21 № 9 2002

О ТОЧНОСТИ РАСЧЕТА ОТКОЛЬНОГО РАЗРУШЕНИЯ

Рис. 4. Зависимость $P_{min}(m)$; l – аналитическое решение, 2 – расчет по методу [2].

Рис. 6. Зависимость $P_{min}(m)$; 1 – аналитическое решение, 2 – расчет по методу [4].

Выразим отсюда t и подставим в (60):

$$t = t_{\Pi\Gamma} + \frac{(t_2 - t_{\Pi\Gamma})^2}{(t_2 - t_{\Pi\Gamma}) - m_{ork}C_{\Pi\Gamma}}.$$
 (74)

ХИМИЧЕСКАЯ ФИЗИКА том 21 № 9 2002

Рис. 5. Зависимость $P_{min}(m)$; 1 – аналитическое решение, 2 – расчет по методу [3].

Рис. 7. Зависимость $P_{min}(m)$; l – аналитическое решение, 2 – расчет по методу КАМА-97.

Подставим (74) в (72):

$$\min P = \frac{1}{3} \left[\frac{1}{C_{\Pi\Gamma}} \left(1 - \frac{mC_{\Pi\Gamma}}{t_2 - t_{\Pi\Gamma}} \right)^3 - 1 \right].$$
(75)

77

Если полная масса системы равна M, то зависимость min P от массовой лагранжевой координаты будет выражаться формулой

$$\min P = \frac{1}{3} \left[\frac{1}{C_{\Pi\Gamma}} \left(1 - \frac{(M-m)C_{\Pi\Gamma}}{t_2 - t_{\Pi\Gamma}} \right)^3 - 1 \right].$$
(76)

2. РЕЗУЛЬТАТЫ ЧИСЛЕННОГО РЕШЕНИЯ ЗАДАЧИ ОБ ОТКОЛЕ

Задача о выходе нестационарной УВ на свободную поверхность вещества и образовании откола численно решалась в постановке, соответствующей построенному в разд. 1 аналитическому решению. Были заданы следующие начальные параметры:

$$\rho_0 = 2.7, \quad E_0 = 0, \quad U_0 = 0, \quad P_0 = 0, \quad \gamma = 3,$$

 $\rho_{0k} = 2.7, \quad C_{0k} = 3, \quad \gamma = 3.$

На левой границе системы было задано переменное граничное условие U(t), вид которого приведен на рис. 2.

Задача была рассчитана по методике КАМА-97 [1] и методикам [2–5]. На рис. 3–7 приведены за-

висимости P_{min} от массовой координаты, соответствующие расчетам по этим методикам. Зависимость $P_{min}(m)$, полученная при расчете по методу КАМА-97 (рис. 7), удовлетворительно согласуется с аналитическим решением (76). Видно, что при расчете по монотонному методу [3] минимальное давление не достигает давления, при котором происходит разрушение, а при расчетах по методикам [2, 4, 5] разрушение наступает раньше, чем в аналитическом решении.

СПИСОК ЛИТЕРАТУРЫ

- 1. Куропатенко В.Ф., Макеева И.Р. Разностный метод расчета уравнений гидродинамики. Препринт № 120. ВНИИТФ, 1997.
- 2. Neumann J., Richtmyer R. // J. Appl. Phys. 1950. V. 21. № 3. P. 232.
- 3. Годунов С.К. // Мат. сб. 1959. Т. 47(89). Вып. 3. С. 271.
- Куропатенко В.Ф. // Тр. матем. инст. им. В.А. Стеклова. 1966. Т. 74. С. 107.
- Lax P., Wendroff B. // Comm. Pure Appl. Math. 1960. V. 13. P. 217.