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9 Investigation of the Dissipative Properties
of Difference

Schemes for the
Gas-Dynamics Equations

V. F. Kuropatenko, p. sc. (Phys.-Math.)

The gas-dynamics equations describe a wide range of
compressible-fluid motions ranging from the very slow movements
of the atmosphere to the fast motions of gases in combustion cham-
bers and the very fast motions of gases during an explosion. The math-
ematical modeling of these motions is of great scientific and techni-
cal importance, and this accounts for the endless flow of publications
devoted to the development, analysis and application of the corre-
sponding mathematical models. The difference scheme (DS) is an
important element in a mathematical model. Its qualities have
a direct impact on the quality of the mathematical experiment. The
development and use of third and fourth-generation computers have-
made it possible for us to pass from the investigation of one-dimen-
sional and two-dimensional motions to the mathematical modeling
of motions in space, the characteristics of the medium depending on
three space coordinates and time. In order to investigate the proper-
ties of a DS however it is often sufficient to restrict consideration to-
the equations for the one-dimensional case.

Modern applied mathematics employs a variety of methods for
investigating [1] the properties of difference equations, such as their
stability and approximation. The instability of a DS quickly be-
comes apparent on a finite grid and makes it impossible to continue:
the calculations. Approximation, on the other hand, is an asymp-
totic property of a DS and merely indicates the way the approxima-
tion errors vanish when the grid is refined. An approximation error is.
an infinite series of terms which are products of powers of the grid
spacings and functions of the solution. These functions are different
DS’s. It is these functions that determine the quality of the DS on
a finite grid. Consider for example, the following two ways the ap-
proximation error ® dependson the grid spacing % (a first and a second
order DS):

(1)1 = h, 0.)2 = 100 hz.

In terms of the rate of convergence dw/dh the second DS is pref-
erable to the first. On a finite grid, however, and for 2> 0.01 we:
have w; << 0,, and the first DS turns out to be better than the second
in terms of the approximation error.
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To investigate the approximation error of a DS on a finite grid
the notions of conservatism [1, 2, 3] and complete conservatism [4]
of the DS were introduced. It was once believed for difference equa-
tions of gas dynamics [4] that the difference equation of energy could
not be transformed from its nondivergence form to divergence form
and vice versa using the other equations of DS. Naturally therefore
several workers wanted to relate the properties of difference equa-
tions to their form. Thus [3] identifies the divergence of DS’s with
their conservatism and [1] identifies the conservatism of DS’s with
their divergence only if the auxiliary quantities on the faces of a
grid cell are invariant under the space index. An analysis of the
work so far carried out on the properties of the difference conserva-
tion laws indicates that the a priori theory of the conservatism of
DS’s is incomplete and that the estimates are inconsistent, because
most writers prefer the divergence form for the equation of energy
and the nondivergence form (density equals mass divided by volume)
for the equation for the conservation of mass.

We consider a method for investigating the conservatism of a DS

and use it to define the dissipative properties of some well-known
DS’s.

9.1 DIFFERENTIAL AND DIFFERENCE EQUATIONS

In the absence of viscosity, heat conduction, and energy
sources, the equations for the conservation of mass, momentum, and
energy for a perfect medium in Lagrange coordinates are:

v ou .

L LT ) (9.1.1)
Ou' \7-8p 1 9
o Vom0 (4-1+%)

a A

The system made up of (9.1.1) to (9.1.3) contains four unknown func-
tions (V, the specific volume, p, the pressure, £, the specific internal
energy, and u, the mass velocity) which depend on two independent
variables (¢, the time, and m, the Lagrange coordinate). It is known
from thermodynamics that given a number of thermodynamic func-
tions characterizing the state of a material two are independent and
the others can be expressed in terms of them. Since (9.1.1)-(9.1.3)
contain three thermodynamic functions, to close the system we need
only add an equation of state

F(p, V, E) = 0.

—_— e
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The position of every particle in space is determined by its Euler
coordinate x = z (£, m) to find which we may use one of the equations

(%) —u=o, (9.1.4)
(ggh_vza (9.1.5)

Equations (9.1.1), (9.1.4) and (9.1.5) are dependent, one of them
following from the other two. We could consider also several equations
which are consequences of (9.1.1)-(9.1.3) and other equations of
thermodynamics. By multiplying (9.1.2) by u and subtracting from
(9.1.3) we get

oE du
By multiplying (9.1.1) by p and adding it to (9.1.6) we get
aE aV
S+ p5-=0. (9.1.7)

Equations (9.1.6) and (9.1.7) follow from (9.1.1)-(9.1.3). It is possible
to write out a great many consequences if we take into considera-
tion the various thermodynamic functions (enthalpy, free energy,
temperature, etc.). Of the functions that do not appear in (9.1.1)
to (9.1.7) we shall only consider entropy, S, since it is known to
remain constant along a streamline of motion in adiabatic flows.
Equations (9.1.1) to (9.1.7) contain three thermodynamic func-

tions, p, V and £. Let V and £ be independent. The equation -of the
rate of change of entropy S (V, E) along a streamline

a8 aS av 9S oE

=\ lsw+lahar
is transformed using familiar thermodynamic equations, i.e.

(37 )t (37 )s (GE ) =0 (55)y (32)y =t

oF )
pZ#(W)s‘ T:(W)V
to the form
88, OF av
Y acade ot 3 )

Equations (9.1.7) and (9.1.8) yield the equation for the conservation
of entropy along a streamline

aS
73220 (9.1.9)

Equation (9.1.9) like (9.1.6) and (9.1.7), is a consequence of (9.1.1)-
(9.1.3) and the thermodynamic equations.

1401177
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An analysis of other familiar thermodynamic functions shows that
none of them remain constant along a trajectory.

Finally, let us consider the equation of state F (p, V, E) = 0 in
greater detail. By differentiating it with respect to ¢ we obtain the
rate of change of pressure
o (_51) LAY ( IR ) 2E,
at — \aV /g ot 0E v ot °

Substituting the g——f from (9.1.6) or (9.1.7) into this we get

ap ou \
L a2 =0, (9.1.10)

op oV
a_t_*_azW—O’ (9.1.11)

where
ap ap { Op )
IR CE T (6 Bl i St g LS LR
@=—(37)s=—(F)at2(3E )

For numerical integration the differential equations are replaced
by difference equations. We shall consider below difierence equa-
tions in differential form. Obtaining difference equations for gas
dynamics in differential form and investigating their properties
are discussed in more detail in [5].

We shall investigate difference equations approximating (9.1.1)
to (9.1.7) and (9.1.9) to (9.1.11) in the form

%—%=wu o 22— o, (9.1.12), (9.1.13)
2 (E+0.502) + 4 (pu) = 5, (9.1.14)
Z—j—-u @5 (;’,fl_ 13143, (9.1.15), (9.1.16)
I p o, b pS=w,  (9.0.17), (9.1.18)
75 o, (9.1.19)
B2y, Ztali=o, (9.120), (91.20)

Here o; (i =1, ..., 10) are the errors in the approximation of
equations (9.1.1) to (9.1.7) and (9.1.9) to (9.1.11) by equations
(9.1.12) to (9.1.21) respectively, and have the form

o; o Agathl (k4 121), (9.1.22)
0, =0

h=
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where the 4;;; contain partial derivatives of the functions appear-
ing in the corresponding difference equations and are independent
of T and %.

9.2 TRANSFORMABILITY OF THE FORMS OF
DIFFERENCE EQUATIONS

We restrict our consideration here to difference equations
(9.1.12) to (9.1.21). In general, this system of equations does not
contain all the consequences of the conservation laws since we did
not consider every thermodynamic function. However, the only
thermodynamic quantity conserved along a streamline, entropy, is
in the system of (9.1.12) to (9.1.21). Increasing therefore the number
of equations to be considered by including the other thermodynam-
ic functions makes little sense when investigating the conservatism
of a DS, although it does play a role when determining the type of
a DS. This however is beyond the scope of this paper.

The system of (9.1.12) to (9.1.21), which contains 10 equations
and 4 independent functions (z, v and two thermodynamic functions),
is overdetermined. To find a numerical solution only some of the
equations need be used. Constructing a particular DS consists in
choosing the required number of equations from (9.1.12)-(9.1.21),
i.e. in choosing particular w;. Following well-established termino-
logy [4] we shall refer to the difference equations of (9.1.12) to
(9.1.14) as equation in the divergence form and to equations (9.1.15)
to (9.1.21) as equations in the nondivergence form or simply as di-
vergent and nondivergent equations.

Theorem 9.1. The divergent difference equations of gas dynamics
can be transformed into equations in the nondivergence form and
vice versa by using the other equations of the DS.

Proof. We transform the left-hand sides of (9.1.12) to (9.1.21)
and obtain a system of equations that contain w; from the difference
equations of (9.1.12) to (9.1.21). We multiply (9.1.12) by p, add it
to (9.1.17) and subtract (9.1.18) from the resulting expression

po;+ 0g— ;=0 (9.2.1)

We differentiate (9.1.15) with respect to m and (9.1.16) with respect
to ¢

oAk, & el 4 d
amat _om ¥ Gtom ot
b am 77 0w .
where o, = 5”—:’ and o; = 5-5- . We then express g—f’; and %/ , omitt-

ing the bar above ®, and wj, for convenience and substitute them
into (9.1.12):
0.)1 = (1)4 + 0)5 e 0. (9.2-2)

14%
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We multiply (9.1.13) by u, subtract (9.1.14) from the resulting
expression and add (9.1.17) to get

Uw, — w3 + wg = 0. (9.2.3)
We next substitute (9.1.18) and (9.1.19) into (9.1.8), hence
w; — oz = 0. 9.2.4)

By multiplying (9.1.12) by «?, adding it to (9.1.20) and subtracting
9.1.21) we get

a2(1)1 + (1)9 bpess (,010 == O. (9.2.5)

Finally, (9.1.18), (9.1.21), and the equation for the rate of increase
of | pressure yield ,

(%)Voh——mm:O. (9.2.6)
Equations (9.2.1) to (9.2.6) form a system of six equations linear in
®; with two unknowns. The rank of the matrix of coefficients of the
system is six. Hence the system formed by (9.2.1) to (9.2.6) has funda-
mental solutions, each consisting of six linearly independent solu-
tions. The number of fundamental solutions K< C? = 210. Let
us consider them. We begin with the most common type of DS in
the literature, i.e. in which ®,, w;, ®,, and w, are independent. We
transfer the terms of the equations that correspond to elements 2
to 5 of the columns to the right-hand sides of the equations. As a
result we obtain a system of nonhomogeneous equations linear in
®;. The matrix of this system

P LigURe §oUTa Fiyl nouy
$6 D41 10000l 404 8 5,160
0 14 25hi@ hos@-:@! o)

o, Sty AL EINGT 1504 Epolisiyg
L IR § IR % e
00 £ 00 —1t

and. the augmented matrix

o1 e 00 0w
10,,. 0 ©0 "0 oo
1 - 0 00 0 o;—uo,

B R0 clidol e dn D 130 e B
W el | e iy (S sl
00 £ 00 -1 0
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both have rank r = 6. Consequently the system is compatible, the

fundamental solution exists and is of the form

W = 0, — Oy

Vg = — WO+ D,

0; = p (0, — @) — uw, + 3,

0g = p (0, — ©5) — U®, + O3,

09 == (p%—az)(mé—(o5)+—§%(m3—um2),

0
Wy = 73% (P (0 — 05) — U, + @g).

By considering all of the 210 systems in a similar way we find that
only some of them are compatible, and hence that there are less than
210 fundamental solutions. We shall restrict ourselves to construct-
ing fundamental solutions for those types of DS’s which are found
in the literature. The DS type numbering and their corresponding
sets of independent and dependent w; are given in Table 9.1.

Table 9.1
DS : i D dent
type ndependent ependen
4 W, O3 Oy O3 0; O O, O O O
2 Wy Wy O5 Of W 03 ©; Oy Oy O
3 W, ©; O O w; O3 ©; O Oy O
4 ©; ©p W3 Oy W; O ©; O Wy O
5 W W, g O Wy M5 0O, g Oy O
6 0 0, 0O O W3 05 O Mg Oy O

The existence of these fundamental solutions implies that:

1. If a DS uses the energy equation of (9.1.14) in divergence form,
then it can be transformed by using the corresponding fundamental
solution to any of equations (9.1.17) to (9.1.18) in nondivergence
form (DS of type 1).

2. If a DS uses the energy equation of (9.1.17) or (9.1.18) in non-
divergence form, then it can be transformed by using the correspond-
ing fundamental solution to equation (9.1.14) in divergence form
(DS of types 2 and 3).

3. If a DS wuses the mass conservation equation of (9.1.12) in
divergence form, then it can be transformed to the mass conservation
equation of (9.1.16) in nondivergence form (DS of types 4, 5, and 6).



214 V. F. Kuropatenko

4. If a DS uses the mass conservation equation of (9.1.16) in non-
divergence form, then it can be transformed to the equation of (9.1.12)
in divergence form (DS of types 1, 2, and 3).

The theorem is proved.

9.3 THE CONSERVATISM AND DISSIPATIVE
PROPERTIES OF A DIFFERENCE SCHEME

Definition. If a difference scheme preserves unchanged
one, or a combination, of the functions that appear in equations
(9.1.12) to (9.1.21), or preserves unchanged integrals of combina-
tions of functions over any domain or contour then it is called conserv-
ative.

Of the functions in (9.1.1)-(9.1.7), or (9.1.9), only § and m are
constant along a streamline. When considering a DS we must re-
strict our attention as to whether they preserve S and m exactly or
approximately along a streamline. Since these properties become
apparent on every streamline, they are local properties of conserva-
tism.

Theorem 9.2. The necessary and sufficient condition for a differ-
ence scheme to be M-conservative is that

65 = Oy, (9.3.1)
where

Am?2k

o o]
52 ()g
o = — 2\ Zr T
=1

dt dm2R+1 -

Proof. Consider the difference mass-conservation equation in non
divergence form

Ao
s gy (9.3.2)

where Az = z, — z_,. We expand z; and z_, into Taylor series
about the point z, = 0.5 (z; + z_;) and substitute them into (9.3.2):

Ax Am?2k

dx ) §2R+1ig
Sheosi BN . /= S o N
T T Tk B B
h=1

Om2h+1

= U,

Equation (9.1.16) is subtracted from this to get

0
Am?2k §2htly
S 50
0; + 2) SRR DT gt — O
k=1

(9.3.3)
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Differentiating (9.3.3) with respect to ¢ and then obtaining the ex-

: oA
pression for 27 | we get

ot
8Am £l Q)M'—(:)5 (9.3'4)
& < 2kAm?2k-1 §2r+1g
2 22k (2k+1)! om2htl

h=1
Necessity. Suppose that (9.3.1) does not hold, i.e. that ©w; #* © -
Then it follows from (9.3.4) that

eAm
at o 0

along the streamline and that the mass is not conserved.

Sufficiency. Let 227 = 0. Then (9.3.4) implies (9.3.1).

The theorem is proved. ‘ :

Corollary 9.1. A DS containing the mass-conservation equation
of (9.1.16) in nondivergence form is always M-conservative.

Corollary 9.2. A DS containing the mass-conservation equation
of (9.1.12) in divergence form is M-conservative provided

54 o (1)1 = Opn- (9.3.5)
Indeed ©, and ®, are known in DS’s of types 4,5, and 6. According
to Theorem 9.2.1 and using the appropriate fundamental solution

we get 3
05 = 0 — O (9.3.6)

If this o, satisfies (9.3.1), then the DS’s of types 4, 5, and 6 are all
M-conservative. But if @5 5= ®ar, then the DS’s are M-conservative.
Since ®, and o, are approximation errors of the form in (9.1.22.),
the mass-production equation (9.3.4) has the following form in
M-nonconservative DS’s
B S Bt (e 121). (9.3.7)
k=0, 1=0
Definition. The nth differential approximation of a DS is M-con-
servative if Byn; = Oforallk + I<C nin the mass-production equa-

tion of (9.3.7). . P -
Theorem 9.3. The necessary and sufficient condition for a differ-

ence scheme to be S-conservative is that
wg = 0. (9.3.8)
Necessity. Suppose that wg=0. When it is substituted into (9.1.19)
we get g—f- == 0. The entropy changes.
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Sufficiency. Let 52 = 0. When 22 is substituted into (9.1.19),

we get (9.3.8).

The theorem is proved.

None of the DS types given in Table 9.1 has an independent .
For each DS type wg must be expressed in terms of independent
®; thus:

Type 1. @3 =p (64 ~ ‘705) + 03 — uo,,

Type 2. ‘wgl=iipr(o, ' — o) 4w

Type 3. 0wy = o,

Type 4. 03 = pw; + 05 — uw,, (9.3.9)
Type 5. wg = po; + o,

Type 6. wg = ;.

Evaluating the changes in entropy along a streamline over time
is an effective way of controlling locally the accuracy of a thermody-
namic calculation. Since all ®; are of the form of (9.1.22), we can

obtain a general entropy-production equation from (9.3.9) and
(9.1.19), ''viz.

a8 %
Ta—l: Z Bsthkhl, (k+ l>1).
k=0, I=0

(9.3.10)

Definition. The nth differential approximation of a DS is S-con-
servative if Bg,; = 0 for all ¥ + I<C n in entropy-production equa-
tion (9.3.10).

Consider DS’s of types 1 and 4 with the divergent equation of
energy of (9.1.14). It follows from (9.3.9) that the right-hand side

of entropy-production equation (9.3.10) may contain values of the
v

mass velocity u and the derivatives %—tivt This means that the class

of DS’s with the divergent equation of energy contains schemes in
which the entropy changes when an undeformable material is trans-
lated or accelerated, and this contradicts the laws of thermodynam-
ics.
Definition. A DS is said to be thermodynamically normal if the
rate of entropy production in it is independent of the mass velocity

and acceleration of the material. But if g—: does depend on u or on

v
%Tl: , then the DS is thermodynamically abnormal.

Definition. The nth differential approximation of a DS is said

to be thermodynamically normal if the Bg,; functions of (9.3.10),
for which & + I<C n, do not contain the mass velocity of the mate-
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v
rial or its acceleration Z—l: ; if they do, it is thermodynamically ab-
t

normal.

To determine whether a divergent DS is thermodynamically nor-

mal theright-hand side of (9.3.10) must be investigated and it has to
V.
be shown that it is independent of u and %.

It is obvious that changes in entropy due to approximation errors
must not exceed its changes in characteristic physical processes.
As an illustration consider a weak shock wave at whose front we
have the equation

E—E;=—05(p + py) (V—=1V, (9.3.11)
relating the values of py, V,, and £, before the discontinuity to the
values of the p, V and E after it. We represent £ and p as Taylor
series at the point p,, V,, E,:

E=Eot (57 )4 AV + 7 (77 )87
5 (G ) 47+ (55 )y A5+ 2 (G )y 8824
p=Pot (31 )o AV+ 5 (57 ) AV (35 ), A5+,

where AV =V — V, and AS = § — §,. By substituting £ and

p in (9.3.11) and using T = (%)V and p = — (%E)S we get
1 ikl .
TAS = — 15 (ﬁ%)s AV3 L0 (AVY: AS?). (9.3.12)

Thus the change in the entropy on a weak shock wave is proportional
to the cube of the change in the specific volume. This well-known
[6] equation, (9.3.12), will be used as the accuracy criterion for the
calculation of entropy. Assuming that § and V depend on time ¢
and that AS and AV are changes in S and V for a single time step
1, we represent them as Taylor series. By substituting these series
into (9.3.12) we get

as
= =Wy

i & 0% ( av \3
os=—45 (o )s (G ) +- o
Equation (9.3.13) makes it possible to divide DS’s as strongly dis-
sipative and weakly dissipative schemes.

T
where

(9.3.13)
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Definition. A DS is said to be strongly dissipative if the FDA
(first differential approximation) of its entropy-production equa-
tion is S-nonconservative.

Definition. A DS is said to be weakly dissipative if the FDA of
its entropy-production equation is S-conservative.

9.4 AN ANALYSIS OF THE S-CONSERVATISM OF

SOME DIFFERENCE SCHEMES FOR THE
GAS-DYNAMICS EQUATIONS

We discuss to what degree of accuracy the law of the
conservation of entropy is satisfied in DS’s with the divergent and
the nondivergent equation of energy. A detailed analysis of the chang-
es in entropy in some DS’s is given in [7]. Here we partly repeat this
analysis but in a different form and for a wider class of equations.

We first examine the S-conservatism of DS’s of type 4. Let the
unknown quantities p, V, £, u, S and T be defined at grid points
with half-integer indices (referred to the midpoints of grid intervals).
Following [7] we write the difference equations in their general form,
viz.

n+1 ) Bgna e
Vico.s— Vico.s Y1 =M 0
25 =47,
T h
n+1 n * *
e A N
0.5 +0.5 1 \
it : it L0, (9.4.1)
T h
n+1 n 2 * .
Eifos—Eiios + (3 0s) = (i 0.5) o Pivatieg P?”z‘_o
T 27 ¢ h T

The quantities with an asterisk are auxiliary quantities.

We examine the character of the changes in the entropy in some
difference schemes of the two-parameter family of the IIIA schemes
of [7] where the auxiliary quantities are defined by the formulas

ui = 0.5 (1 — 1) @lros Fuios)+ L (Wits s +uitds)),
=05 ((1—=1) (pHos +' Pl ois) 4Ly (PRl - prtd )

Pitos T PiZos)):
In the general case, the independent ®; for the family of DS’s
under consideration have the form

(9.4.2)

3V
oy =7(},—0.5) = —rz(zﬁ—z,+%)%+0(ra, h?),
wy=7(l,—05) T2 — rZ(l;—lz+i)ﬁig+0(r3, ),
a 0
-m3:——'r[( —0.5) = (p )+, 0.5)7,;(u7§)]
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i[ a3V a%p av dp 0%V 3u
TP os T e ot o 4B
(9.4.3)
7} 6p ou 3 2
+12 (1,—0.5) (I;—0.5) —— ( e )]+0(r, R2).

When (9.4.3) is substituted into type 1 of (9.3.9) and the wg is sub-
stituted into (9.1.19) we obtain an entropy-production equation
from which it follows that those type IIIA DS’s, for which [, == [,
and [; = [, 5= 0.5, are thermonynamically abnormal and strongly
dissipative. The only DS of this family, for which /;, = [, = 0.5,
has the entropy-production equation of the form

39S %% (0% &V ap & At
A 1 g e e L R
In other words, the FDA of that difference scheme is S-conservative
and its second differential approximation is thermodynamically
normal.

We use the equations

(%) B, e () () (), 2
ab—— \igVilg-at' 7, 0t e\, aVR 8 \oot 0V)s ot

and simplify (9.4.4) to get

as 2 [ 9% av \3 i
Tor=—wmlwlsle) o062 (3.:4:5)
Thus the principal term in (9.4.5) coincides with (9.3.13) and hence
the errors arising in determining the entropy in that scheme do not
exceed its changes on weak shock waves. In other words, none of
the IITA DS’s of [7] are weakly dissipative except for the one with
I, =1, = 0.5. The other DS’s are thermodynamically abnormal
and cannot be recommended for calculations. We show that the
dissipative properties of IITA DS’s remain unchanged if the mass-
conservation equation of (9:1.12) is replaced by the nondivergent
equation of (9.1.16) in the form

(9.4 4)

x?_z—i-i zn-i—i

—1—+—1h— V?:oi.s =0
and the equation of the streamline is taken in the form

n+1 n
< A —_2X.
2 _—ul=0
%3

The DS containing these equations belongs to type 1. If we take u?}
and p¥ in the form of (9.4.2), then the independent approximation

errors ®, and w; have the same form they do in (9.4.3) and the o,
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and o, are as follows:

== Ll
0= (fy— 05)Tat6m+12 dm ot | 8 omd
) h? 63u
s i

By substituting 0,, wj, ®,, and o5 into (9.1.19) we obtain an en-
tropy-production equation from which it follows that when [, == I..
l; 5= 0.5 or I, 5= 0.5 the DS’s are thermodynamically abnormal and
strongly dissipative. When [, = [, = 0.5 the entropy-production
equation is of the form (9.4.4). This scheme is weakly dissipative
and thermodynamically normal.

Now we consider the second two-parameter family of schemes.
ITIB of [7], where the auxiliary quantities are defined as follows

| Tl
ui = 0.9 (Uiyo.5 1 Ui-0.5) ——> (Pi0.5 — Pi-0.5)s
L, (9.4
pf=0.5(plo0.5 + Pi-0.5)— T‘l(uﬁo.s —uig.5)-

In differential form, together with (9.4.1) the equations of (9.4.€,
assume the forms in (9.1. 12) to (9.1.14), where

W=l —05)1 +0(r2 k%Y,

6t2

mZ:T(lé om?2 {15 (Ztl: )+0(129 h2)3

S ap av . av |2 a*u )
oy =7 (05 S8 o1 (F-) —0su Sr vl i

(2 ) ) +o@ m).

By substituting o;, 0,, and oz into (9.3.9) and (9.1.18) we get
e ( 05)("’")‘
(05 (5F), +1) (5 )) +o m.

It follows from this that the FDA’s of all the DS’s in this family,
for which I3 s~ 0.5, are thermodynamically abnormal, but the DS,
for which I; = 0.5 and I = 0.5 a2, is thermodynamically normai and
strongly dissipative.

Godunov’s scheme [8] is obtained for 11IB DS with I, = 2’Tla and

i+ Tl Ly s Q) (p

av
scheme I3 = 0.5 and /, = 0.5 only when the grid spacing ratio

Le _g—: , Where a = ]/ (——) is the velocity of sound. In this
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—1. For other spacing ratios, i.e. — < 1, the FDA of the scheme

= hermodynamlcally abnormal.
In Lax's scheme [9], which is obtained for a IIIB DS with /3 =

i(L‘) and I, = 1(£>2, the FDA is also abnormal for
2\ T ; T

2
We now consider the dissipative properties of a type 4 DS [10]
in which the auxiliary quantities are defined in terms of functions

 that have discontinuities at the contact boundaries. In the

mass-conservation and momentum (9.4.1) equations the auxiliary
values of velocity and pressure are taken as:

n 1 1
uf=0.25 [u?+0.5 Ful gsupiipults;

~%(V?:(}.5—Vz+o wrriogs e Vil 5)J

=0.25 [ P}yos T Prgs ™+ Pifos & PIXos
——(u1+0 5 i+0.5_u?j01.5+u?-0.5)J-
In the energy equation (9.4.1) the auxiliary values (pu){ are chosen
according to the formula
(pu)t = 0.5 [(pu)pfd o + (pu)it

+1 __en+1 n k
(3?4-05 €405 ertl s T e p.5)

where ¢ — E - 0.5u®. The approximation errors in this DS are of
the form

120 ri§1A

12 d%u h? 6p 3 1,3
0y = 15~z Thag e O (8 B,

% 02E 0%u ou \2
oy =5 Gat+ugw +(5))

2 3 h2 63
S E bt o
By substituting these oy, ©,, and ®; into (9.3.9) and (9.1.19) we
get

N T I’ *E

%u du \2°
7% [ 2 tu St (5r) | Ho@ w).

Hence the DS of [10] is thermodynamically abnormal and strongly
dissipative on adiabatic solutions.
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We now consider types 5 and 6 DS’s with the energy equation in
nondivergence form. A “completely conservative” DS with o; = 1.
0, = 0 and o, = 0.5 is recommended in [4]. The difference equa-
tions in this scheme are of the form:

n+1 n Faald o
Vitos—Vieos  Yig1— ¥ o
P 7 =0,

T
N+l n n+l . ntt
Uy U p; 51 Pl 3
i i + i40.5 1—-0.5 :O, (9-4.“

T h

n+1 n n e PR, SRR I0 T ot
Eios—Eivos it HIYTIORG, o Ok

T i+0.5 2h 10

We write the first two equations in the differential form of (9.1.12)-
(9.1.13) with the approximation errors

oy = — 0512 L 0@, 1),
w,= —0.57 ?:tl; + O (12, h?).

The third equation of (9.4.7) is written in form (9.1.17), where

op oV
Wg= —0.57 _(9.? —at—= 0 (TZ, hz).

By substituting these o; and wg into (9.3.9) and (9.1.19) we get

P —0.51%(;;%‘;-) +0 (w2, h). (9.4.8)
In this DS the FDA is S-nonconservative.

Equation (9.4.8) implies that the approximation errors in the
“completely conservative” DS in question are more powerful sources
of entropy than physical sources (weak shock waves). “Complete
conservatism” does not remove these sources.

The class of “completely conservative” DS’s has weakly dissipa-
tive schemes in which the computational sources of entropy do not
exceed physical sources by an order of magnitude. An example is
the DS of [4] with ¢; = 0, = 0, = 0.5 which coincides with the
DS of [11]. In these DS’s the approximation errors are of order t*
and their FDA’s are S-conservative.

We now consider DS’s with the nondivergent energy equation
of (9.1.18). Following [7] we approximate (9.1.7) by a one-parameter
family of difference schemes

n+l__ fFn
EaoEn

(1—B) p™* + [hv")V—mi:ﬂ a9, (9.4.9)
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Transforming (9.4.9) to the differential form of (9.1.18) we get
__{ap av \2 8P av \3
s T( av )s (7) (B—0-9)— Tz( V2 )s (—57)
1 d vV o
< (B—Bt+g) =2 (L), TS 2(B—0.52+0 (7). (9.4.10)

It follows from (9.4.10) that regardless of the value of B, all the
DS’s of that family are thermodynamically normal. In one DS ob-
tained from (9.4.9) for p = 0.5 we find that o, = o, of (9.3.13)
and that DS is weakly dissipative. All the other DS’s obtained from
(9.4.9), (9.1.18) and (9.4.10) for B 5= 0.5 are strongly dissipative.

The difference energy equation of (9.4.9) was first used by Neu-
mann and Richtmyer [12]. This class also contains the difference
schemes of [13] and [14].

9.5 CONCLUSIONS

The above discussion as well as a number of other exam-
ples [15] suggest the following:
1. The properties of M and S-conservatism are not related to the
form of difference equations, i.e. whether they are in divergent
or nondivergent form.
The construction of the entropy-production equation for every
DS allows the dissipative properties of that DS to be determined.
Some of the DS’s with the divergent energy equation of (9.1.14)
are thermodynamically abnormal.
Most DS’s with the nondivergent energy equation of (9.1.17)
or (9.1.18) are thermodynamically normal. Some are weakly
dissipative.
Some completely conservative (according to [4]) DS’s are strongly
dissipative.
6. Strongly dissipative DS’s produce “computational noise” which
renders a whole class of physical processes indistinguishable
(weak shock waves, for example).
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On Complete Conservatism of Difference
Schemes

F. V. Ivanov,
Z. I. Fedotova, cand. Sc. (Phys-Math.),
Yu. I. Shokin, p. sc. (pPhys.-Math.)

Numerical calculations of gas flows show that one of the
important properties of the difference schemes in use is their com-
plete conservatism [1, 2]. This paper gives an analysis of completely
conservative difference schemes by the differential approximation
method [3]. The terminology and definitions follow [2] and [3].

10.1 THE LAGRANGIAN COORDINATE CASE

10.1.1 Before describing the relation of the complete conservatism
of difference schemes to their first differential approximations
(FDA’s) we define the notion of the equivalence of difference schemes
131

Given some domain G of variables x and £, consider two systems
of differential equations,

ow ow
Fi (.’E, b, g _6t—’ W)ZO (10.1.1)
and
ow ow
Fz (x, r, w, T 6—2) :O, (10.1.2)

where w = w (z, ¢) and F'; and F, are m-dimensional vector functions,
there being an inverse matrix R = R (z, ¢, w) in C (G) relating
(10.1.1) and (10.1.2) as follows:

ow ow dw w
R, (2t w, 5 G )= Fa(zto w5, 7).
Let the difference schemes
AI (w1 T, SI) a 0 (10.'1.3)
and
Ay w, 7, Sz) =0 (10.1.4)

approximate respectively (10.1.1) and (10.1.2) to an order of
approximation y. Here ¢ = nt, x = ih, 1/h = » = const, and S, is
the star.

Definition. Difference schemes (10.1.3) and (10.1.4) are said to be
equivalent if there is an inverse difference operator R; in C (G)
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