ON A DIFFERENCE METHOD FOR THE CALCULATION
OF SHOCK WAVES+*

V.F. KURQOPATENKO
(Chelyabinsk)

(Recetived 7 May 1962)

The numerical integration of the equations of gas dynamics:

u =—P,,

V,= uy

8, =—(Pu)x, a)
z = E+ —;—u’v

P =f(V,E)

is associated with a great many difficulties caused by the presence of
lines in the x, ¢t plane along which either the unknown functions or
their derivatives suffer a discontinuity. The values of the functions on
both sides of a strong discontinuity which is the front of a shock wave
and is propagated with velocity N are connected by certsin Rankine-
Hugoniot relations:

1 -
u—ug= g7 (P— Po), (2)

E—Eo=+5 (P+ Py (Vo—7).

If we take into account the fact that the entropy of a particle inm-
creases only in the case when its trajectory intersects the line of
strong discontinuity, and in the other cases remains unchanged along its
path, we can divide all the solutions of system (1) into two types:

a) solutions with a dissipation of energy (strong discontinuities),
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Calculation of shock waves 269

b) solutions without dissipation of energy (weak discontinuities,
contact discontinuities, continuous solutions).

In order to overcome the difficulties associated with the existence
of strong discontinuities, various methods have been suggested which re-
duce to the methods of "through" computation [1-4]. The common feature
of these methods is the elimination of the strong discontinuities, thus
basically simplifying the calculations.

To calculate such blurred shock waves it is suggested in [3] that we
use relations (2) in which all the quantities with a Zero suffix and
one of the quantities with a bar are assumed to be known. This enables
us to determine all the other unknowns with a bar, and these play an
auxiliary role and help us to find the approximate solution of system
(1).

In this note we propose to use relations (2) to calculate blurred
shock waves, as in [3]. But by choosing a net which is different from
the net in [3] and selecting the known quantities in (2) in a different
way we arrive at a new, purely divergent difference scheme.

Let us divide the region of integration of system (1) by a net over
the intervals h = X4y — % (i=0,1, 2, ..., N-1). We shall find all
the unknowns at the points x,,. For the numerical integration we use
the following system of difference equations:

W, =y, = — g P — P, @)
ViR, — Vi, = % Uip—UD (4)
B~ 8, = — T PLUip — P, (5)
O, = XL 4+ ey, (®)
PR, = F VR, BLE)- Y

The quantities U?! and P: on the right-hand sides of equations (3)-(5)
are unknown, since the approximate solution of system (1) is determined
at the points % 4y To find them we use the following algorithm.

]

We shall call the approximate solution in the interval [z

ity Fioy
an R-wave if the condition

ui+‘/’: —_ ui—'/l
Ty, Tioy,

>0, @®

is fulfilled, and we call it an S-wave if
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Uiy, ™ Biey,

A

< 0. 9

It is easy to show, using Tsemlen’s theorem [5] and Taylor's formula,
that for sufficiently amall h = i - Ty all the strong discontinu-
ities are contained in the class of S-waves.

In the case of an R-wave U; and P; can be found by interpolation

using the formulae

* 1
Ui= 5 (i, + o),

* 1
Pi= 5 (Pl + PLy). (1)
In the case of an S-wave U‘i and P; are set equal to ; and ;’- The
value of u is found after solving system (2) together with the equation

of state P = (¥, E). We choose the known values in (2) and P in the
following way:

a) Po =z Pin‘—'(.’ Uy == u?__,h, Vo= V:l_”', Ey = E?_./,, ? = P?_{.,l'/. for
Py, > Py, and

by Pp= P&_x/" ug == “?_’.q‘, Vo= V;t},l/ly Ey = E‘?+lf‘| P= P?_,.i/" for

Ply, < Pl,. If the equation of state has the form

i
P=(—1E 3, 1)
{
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FIG. 1. 1 ~ exact solution, 2 - approximate solution.
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¥ > 0 and the direction of increasing i coincides with the positive
direction of the Ox axis, then to determine U: and P; we obtain the ex-
pressioas

P,‘ = Pr__,/‘,
Py, — Pl

Us=uipy + T =P
2V1+'/ 1-'/ : ¥ i+

The choice of the direction of increasing i and the sign of ¥ is not a
restriction. For a different direction of increasing i or for ¥ < 0 we
will obtain expressions of the same type as (12) for U: and P: but with
different suffixes.

(12)

In order to compare this method with previous ones, let us change
from the finite-difference representation of the auxiliary functions U'
P' to their differential form. Assuming the existence of the first deri-
vatives of the unknown functions and ignoring terms of order h% in the
expansions, we obtain from (3)-(5) and (12)

Uy == — Px'
V,=U,, (13)
%, =— (PU"),,

where U* = u + v and v is a small quantity of order h defined by the ex-
pression

P
—-—xh

""—I/TP =
—7% 8x

In the two limiting cases formula (14) takes the form

(14)

h opP 1P T4—16P
~ o o for T=>— 5k 5)
w = —_——
4h oP TP T-+13P

TFior F <~ auh
where ¢ is the mass sound velocity defined by the formula

=~ (3).

We can treat the quantity v as the "viscosity" introduced in the initial
equations.

The use of formulae (12) to calculate U; and P; on an S-wave leads
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to a satisfactory description of the dissipative process; the increment
in the entropy of a particle as it passes across a blurred shock wave
agrees well with the jump in entropy on the exact shock wave.

&t

1

1 4 A i 1 %

é /) & 0 9° 50

FIG. 2. 1 - contact discontinuity, 2 -~ exact solution,
3 - approximate solution.

Let us use our method for an arbitrary equation of state. In this
case we can use a rapidly converging iteration process. The results can
be generalised without difficulty to the case of a non-uniform net, and
also to the case of flow with cylindrical or spherical symmetry.

The stability condition in this case has been established experiment-
ally:
C
K=Yt
h\
Using this method we have made calculations for a number of problems
which admit an exact solution. The agreement of the results is good with-
out exception. In Figs. 1 and 2 we give the results of comparing the

approximate solution obtained by our method and the exact solution for
two problems.

In the first case we solved a problem with the following initial and
boundary values:

1
Ulj_g=0, Pli_¢=0, E[_=0, p|=1 (927)7 Pleeg=1, ulgogy=0-

In the second case the initial and boundary values were given in the
following way: uj,_,=0, Pl,_,=0, E|_,=0, Pl_g=1, tlpg=0,

1 for 0z < 29.5,
Plieg= {0.5 for 29.5< = < 50.
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In both cases the calculations were done with &k = 0,5,

Trans lated by R. Feinstein
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