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The numerical integration of the equations of gas dynamics: 

U( = - P,, \ 

v, = tq 

Y, = - VW,, 

Y = E + $ uz, 

P = 1Y,E) / 

is associated rith a great many dlfflculties caused by 
lines in the X, t plane along rhich either the anknom 

the presence 
functions or 

(i) 

Of 

their derivatives sufrer a discontinnitv. The values of the functions on 
both sides of a strong discontlnoitg which is the front of a shock wave 

and is propagated rith velocity II are connected by certain Kankine- 
Hugoniot relations: 

ii--v,=- $ (U- ug), 

U-Q= $ (F-P& (2) 

B_Eo=$ p+ PO)(V,--7). 
1 

If we take into account the fact that the entropy of a particle ln- 

creases only in the case rhen its trajectory intersects the line of 
strong discontinultv, and in the other cases remains nnchanged along its 
path, we can divide all the solutions of system (1) into tro types: 

a) solutions with a dissipation of energy (strong dlscontinuities), 

l Zh. vych. rat., 3, No. 1, 201-204, 1963. 
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b) solutions without dissipation of energy (weak discontlnnlties, 

contact discontinuitles. continuous solutions). 

In order to overcome the difficulties associated with the existence 

of strong discontinuities. various methods have been suggested which re- 

duce to the methods of “through” computation [l-41. The common feature 

of these methods is the elimination of the strong discontinuitles, thus 

basically simplifying the calculations. 

To calculate such blurred shock waves it is suggested in [31 that we 

use relations (2) in which all the quantities with a zero suffix and 

one of the quantities with a bar are assumed to be known. This enables 

us to detemine all the other unknowns with a bar, and these play an 

auxiliary role and help us to find the approximate solution of system 

(1). 

In this note we propose to use relations (2) to calculate blurred 

shock waves, as in [21. But by choomiag a net rhlch is different from 

the net in [31 and selecting the known quantities In (2) in a different 

ray we arrive at a new, purely divergent difference scheme. 

Let us divide the region of integration of srstem (1) by a net over 

the intervals h = X~+~ - x. (i = 0, 1. 2. . . . , N - 1). We ahall find all 

the unknowns at the pointsaxi+%. For the numerical Integration re use 

the following system of difference equations: 

u?+l 7% 
G', - ui+l/, = - h -I!-. (p;+l- Pi), (3) 

V?+’ - vn 
a+“* If’!, = + (lJ;+I - u;,, (4) 

The quantities IJ; and P: on the right-hand sides of equations (5)-(5) 

are unknown, since the approximate solution of system (1) is determined 

at the points X. I+u. To find them we use the following algorithm. 

We shall call the approximate solution In the interval [xi+%, xi_%1 
an R-rave if the condition 

(8) 

is fulfilled, and we call It am S-wave if 
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W-% --lb. , 

-*< 0. 
xi+ I2 

, -x2. (9) 

It is easy to show. using Tsemlen’s theorem t51 and Taylor’s formula, 

that for sufficiently small h = zi+% - xi w all the strong dlscontinu- 

ities are contained in the class of S-raves. 

In the case of an R-rave ff; and PI can be found br Interpolation 

using the formulae 

In the case of an S-wave U: and P; are set equal to i and ?. The 

value of 5 is found after solving system (2) together with the equation 

of stat% P = f(V, E). We choose the known values in (2) and P in tbe 

folloring r&v: 

Pt;l,. < q!L1,,. If the equation of state has the form 

a 
12 * I 18 w 29 21 26 w .w 32 34 3# 38 co rz 44 

FIG. 1. f - exact solution, 2 - approximate solution. 
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I > 0 and the direction of increasing i coincider, with the positive 
direction of the Or axis. then to determine Ut and P: we obtain the ex- 
preariomm 

0; = q+;1,, + 
q-n,, - p f;% 

r/ I W) 
-- 
2vr+l,* 

.x [(r + I) q!_‘-l,, - (T - 1) q!+l,*l 

The choice of the direction of increasing i and the sign of II la not a 
restriction. For a different direction of increasing i or for I < 0 we 
will obtain expressions of the same type as (12) for U; and P: but with 
different suffixes. 

In order to compare this method with previous ones. let UB change 
from the finite-difference representation of the auxiliary functions UT, 
P; to their differential form. Assuming the existence of the first deri- 
vatives of the unknown functions and ignoring terms of order h* in the 
expansions, we obtain from (2)-(5) and (12) 

Ut = - P,, 

vt = u;, 

8, = - (PC& 

(13) 

where Cl* = II + o and I is a small quantity of order h defined by the ex- 
preseion 

In the two limiting cases formula (14) takes the form 

h aP TP r+iap 
-7~ for T>-- 4 Gh* 

w= 
4h aP YP rtiap -- -- 

r+iaz for -Jo < - 4 az h, 

where c is the mass sound velocity defined by the formula 

aP 

“=- a7 i ( 1 

(15) 

We can treat the quantity o aa the nviscoaityR introduced in the initial 
equations. 

The use of formulae (12) to calculate U; and Pt on an S-nave leads 
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to a satisfactory description of the dissipative process; the increment 
in the entropy of a particle as it passes across a blurred shock wave 
agrees well with the jump in entropy on the er8ct shock wave. 

I- 

f- 

a 
0 

FIt3. 2. I - contact discontinuity, 2 - exact solution, 
3 - approximate solution. 

Let us use our method for an arbitrary equation of state. In this 
case we can use a rapidly converging Iteration process. The results can 
be generalised without difficulty to the case of a non-uniform net, and 
also to the case of flow with cylindrical or spherical symmetry. 

The stability condition in this case has been established experiment- 
ally: 

Using this method we have made calculations for a number of problems 
which admit an exact solution. The agreement of the results is good with- 
out exception. In Figs. 1 and 2 we give the results of comparing the 
approximate solution obtained by our method and the exact solution for 
two problems. 

In the first case we solved a problem with the following initial and 
boundary values: 

al1,=0, Pll=“=O’ E It=“- 0, P ltzo = 1 (P = G), p lxx0 = 1, u lx.&J = 0. 

In the second case the initial and boundary values were given in the 
following way: u(~~~=O, P(,,=O, Elf =g = 0, Plx=#J=i, ul*60=Q’ 

plt=o= 
’ 1 for O<x<29.5, 
-i 0.5 for 29.5<x<50. 
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In both c&ses the calculations mwe dons w%th k = 0.5. 
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