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MOMENTUM AND ENERGY EXCHANGE

IN NONEQUILIBRIUM MULTICOMPONENT MEDIA

UDC 532.529V. F. Kuropatenko

In multicomponent media, the equilibrium states are defined by thermodynamic equilibrium conditions
in the form of the equalities between the pressures and temperatures of the components, the maximum
entropy principle (or the free-energy minimum) for the mixture, and the equality of the velocities of
the components. The conservation laws for the components allow for their interaction with each
other in the form of forces and energy fluxes containing the differences of the velocities, pressures,
and temperatures of the components. The form of momentum and energy exchange between each
component and the continuum expressing the collective properties of the ensemble of components, is
also considered. It is shown that these momentum and energy fluxes are different from zero only for
the states of multicomponent media with velocity nonequilibrium.

Key words: equilibrium, multiphase multicomponent medium, interaction of components, closure
of the system of equations.

Introduction. The great diversity of multicomponent media of natural and man-made origins makes their
investigation an extremely difficult problem. Dynamic processes in multicomponent media, accompanied by phase
transitions of separate components, are especially complex. The components move at different velocities, which
leads to variations in their concentrations in the four-dimensional space x1, x2, x3, t. Because of the interaction of
the components, a nonequilibrium multicomponent medium reaches an equilibrium state after a certain relaxation
time. The relaxation processes of pressures, temperatures, and velocities in multicomponent media have been
studied both for particular mixtures and in general formulations [1–7]. In these studies, the sum of the functions
defining the momentum and energy exchange between all components was usually set equal to zero. This created
difficulties in determining the increase in the entropy of multicomponent media during relaxation. Accounting for
nonequilibrium kinetic energy partly eliminates these difficulties.

Below, we consider problems that arise in the development of models for continuum based on the hypothesis
of interacting continua [1]. In these models, the components are structural elements of multicomponent media, which
are present simultaneously at each point of the volume. Averaging operations using their characteristics make it
possible to pass from the characteristics of the components to the characteristics of a certain continuum, which,
like the characteristics of the components, are continuous in the four-dimensional space x1, x2, x3, t. Therefore,
they can be described by conservation laws. A continuum whose characteristics are obtained by averaging the
corresponding characteristics of the mixture components will be referred to as a virtual continuum. Obviously, one
of the conditions of equivalence between multicomponent media and corresponding virtual continua is a macrolevel
manifestation of the interaction of components in the multicomponent medium. In other words, the conservation
laws of a virtual continuum necessarily depend on the conservation laws of the components.
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The main requirements to which models of multicomponent media should satisfy are as follows:
1. Each component with number i (i = 1, 2, . . . , N) is characterized by the volumetric and mass concen-

trations (αi and ηi, respectively), which satisfy the conditions
N∑

i=1

αi = 1,
N∑

i=1

ηi = 1. (1)

2. For each ith component, there is a complete set of characteristics — the density ρi, pressure Pi, tem-
perature Ti, internal energy Ei, entropy Si, velocity Ui, kinetic energy Ki = 0.5|Ui|2, total energy εi = Ei + Ki,
etc.

3. For each component, the stress tensor is split into a spherical part and a deviator.
4. The thermodynamic quantities (Pi, ρi, Ei, Ti, Si, etc.) are related by equations of state. The modern

equations of state [8] describe polymorphic phase transitions, melting, vaporization, and ionization, considerably
extending the range of applicability of models of multicomponent media.

5. If the values of P , T and U for components with numbers i and j differ, then momentum and energy
exchange occurs between the components.

Continuum of a Component. We shall follow the well-studied approach [2–7] to describing the laws
of conservation of components. It is assumed that when multiplied by the volumetric concentration, the specific
physical quantities (in unit volume of the ith component) become continuous in the volume occupied by the mixture.
They include both the main quantities (αiρi, αiPi, αiρiUi, αiρiEi, αiρiKi, αiρiSi, and αiρiTi) and a number of
other combinations of specific (in unit volume) parameters.

We next consider a mixture of media ignoring turbulence, heat conduction, the effect of fields, and chemical
reactions. These assumptions for ideal media lead to the simplest laws of conservation of mass, momentum, and
energy for the ith component:

∂

∂t
(αiρi) + ∇αiρiUi = 0; (2)

∂

∂t
(αiρiUi) +

∂

∂xk
(αiρiUikUi) + ∇αiPi = αiRi; (3)

∂

∂t
(αiρiεi) + ∇(αiUi(Pi + ρiεi)) = αiΦi. (4)

System (2)–(4) is supplemented by the equation of state for the ith component

Pi = Pi(ρi, Ei) (5)

and the equations for the parameters Ri and Φi that describe the rate of momentum and energy exchange between
the ith component and the remaining components.

We shall consider multicomponent media with possible nonequilibrium with respect to the parameters P , T
and U . This implies that there are three functions τP , τT , and τU that describe the relaxation times of pressure,
temperature, and velocity and depend on the parameters of the interacting components. In real physical processes,
the values of τP , τT , and τU are finite. There are, however, a great number of papers devoted to the so-called
asymptotic models of multicomponent media, in which all or some of the relaxation times are set equal to zero or
infinity. In the present paper, such models are not considered.

Since a multicomponent media is in nonequilibrium, the equations of motion and energy should contain
the forces and fluxes generated by particular kinds of nonequilibria, according to the theory of nonequilibrium
processes [9]. From this point of view, Eqs. (3) and (4) need to be refined. They include the single force Pi —
the spherical part of the stress tensor. One kind of interaction between the components is friction. Therefore,
the force Fi exerted on the ith component by the multicomponent medium is taken in the most general form and
is considered a tensor. Equation (3) contains the vector Ri, which defines the momentum exchange between the
ith component and the remaining components of the multicomponent medium. The form of the vector Ri is well
justified, but the addition of the tensor force Fi extends the capabilities of the model.

Equation (4) contains the function Φi, which defines the energy exchange between the ith component and
the remaining components of the multicomponent medium due to nonequilibrium in pressure and temperatures.
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We add the energy flux Qi that depends on the nonequilibrium in velocities. After the introduction of the force Fi

and the flux Qi, the equations of motion (3) and energy (4) are written as

∂

∂t
(αiρiUi) +

∂

∂xk
(αiρiUikUi) + ∇αiPi +

∂

∂xk
(αiFik) = αiRi; (6)

∂

∂t
(αiρiεi) + ∇(αiUi(Pi + ρiεi)) +

∂

∂xk
(αiFikUi) + ∇αiQi = αiΦi. (7)

Exchange Terms Ri and Φi. In the overwhelming majority of papers (see, for example, [2–7]) it is
assumed that the momentum and energy exchange between the ith and jth components of a multicomponent
medium is defined by the vector Rij and the function Φij . From the conservation laws it follows that

Rij = −Rji, Φij = −Φji. (8)

It is assumed in this case that a component does not interact with itself and that Rii = 0 and Φii = 0. Let us
consider the most widely used forms of Rij and Φij :

Rij = aij(Uj − Ui); (9)

Φij = ϕij(Pj − Pi) + ψij(Tj − Ti). (10)

The functions aij , ϕij , and ψij have a particular form that depends on the state of aggregation and phase states
of the ith and jth components, the sizes, shape, and surface roughness of the particles, and the mechanical and
thermal properties of the components. In order that conditions (8) be fulfilled, the functions a, ϕ, and ψ should
satisfy to Onsager reciprocal relations [9]

aij = aji, ϕij = ϕji, ψij = ψji. (11)

The total momentum and total energy acquired (lost) by the ith component when exchanging with the remaining
components of the mixture are defined by the equations

Ri =
N∑

j=1

αjRij , Φi =
N∑

j=1

αjΦij . (12)

Let us consider one of the possible functions aij that satisfy conditions (11), namely,

aij = aρiρj . (13)

Substituting (13) into (9) and summing over j according to (12), we obtain the following expression for the
vector Ri:

Ri = aρi

( N∑
j=1

αjρjUj − Ui

N∑
j=1

αjρj

)
. (14)

Using the widely used averaging rules

ρ =
N∑

i=1

αiρi, (15)

ρU =
N∑

i=1

αiρiUi, (16)

we reduce expression (14) to the form

Ri = aρiρ(U − Ui). (17)

The velocity U defined by Eq. (16) is called the mass-averaged or barycentric velocity.
We pay attention that the forms (14) and (17) are equivalent. However, Eq. (14) defines the interaction of the

ith component with the multicomponent medium by taking into account the interaction with each jth component,
and expression (17) defines the interaction of the ith component with a virtual continuum whose properties are
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determined by the average values of ρ and U . Thus, the virtual continuum is a participant of the exchange. If the
virtual continuum is assigned the subscript 0, relation (17) becomes

Ri0 = aρiρ0(U0 − Ui).

It is easy to show that this vector satisfies condition (8) in the form

Ri0 = −R0i. (18)

By analogy with Rij , we consider the rate of energy exchange (10) between the ith and jth components:

Φij = ϕ(Pj − Pi) + ψρiρj(Tj − Ti). (19)

Summing over j according to (12), we obtain

Φi = ϕ
( N∑

j=1

αjPj − Pi

N∑
j=1

αj

)
+ ψρi

( N∑
j=1

αjρjTj − Ti

N∑
j=1

αjρj

)
. (20)

Using (1) and (15) and the averaging rules

P =
N∑

i=1

αiPi, (21)

ρT =
N∑

i=1

αiρiTi, (22)

we write relation (20) as the rate of energy exchange between the virtual continuum and the ith component:

Φi = ϕ(P − Pi) + ψρiρ(T − Ti). (23)

If the parameters of the virtual continuum are assigned the subscript j = 0, Eq. (23) becomes

Φi0 = ϕ(P0 − Pi) + ψρ0ρi(T0 − Ti). (24)

From relations (19), (20), (23), and (24), it is obvious that condition (8) is satisfied, including for j = 0:

Φi0 = −Φ0i. (25)

The aforesaid implies that if the ith component acquires a certain momentum or energy, the virtual continuum
transfers the same momentum or energy to it. In other words, the conservation laws of the continuum should contain
the corresponding terms that summarize all momenta and energies transferred from the virtual continuum to the
components.

The results obtained above are of fundamental importance. They show that the relaxation fluxes of mo-
mentum and energy in a multicomponent medium can be treated as the sum of exchanges between all pairs of
components or as the exchange between each component and the virtual continuum, which expresses the properties
of the multicomponent medium, i.e., all components.

For the chosen form of the functions aij , ϕij , and ψij , the vector Ri and the function Φi are such that their
sums over all i = 1, 2, . . . , N vanish:

R =
N∑

i=1

αiRi = 0, Φ =
N∑

i=1

αiΦi = 0 (26)

or, what is the same,
N∑

i=1

N∑
j=1

αiαjRij = 0,
N∑

i=1

N∑
j=1

αiαjΦij = 0.

Below, we restrict ourselves to an analysis of models containing Rij and Φij that satisfy (8), (11), and (26).
Continuum of a Mixture. Equations (2) and (5)–(7) are obtained after passage from the microlevel to

the macrolevel for the ith component. However, the components of a multicomponent medium are its structural
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elements. In other words, the classical averaging methods allow one to pass from a structural medium at the
microlevel to a structural medium at the mesolevel.

To pass from a structural multicomponent medium to the corresponding virtual continuum, it is customary
to employ (see [1–7]) equations that relate the characteristics of the components to the averaged characteristics of
the multicomponent medium. These are Eqs. (15), (16), (21), and (22), and the relations

ρE =
N∑

i=1

αiρiEi. (27)

The averaging of the specific total energy εi requires a close consideration. The fact is that E = ε − UU/2 and
Ei = εi − UiUi/2, and if we substitute these quantities into (27), we obtain

ρε =
N∑

i=1

αiρi(εi −Hi), (28)

where

Hi = (UiUi − UU)/2. (29)

The quantityHi is called the nonequilibrium kinetic energy of the ith component. If we introduce the nonequilibrium
kinetic energy H

ρH =
N∑

i=1

αiρiHi, (30)

then, relation (28) becomes

ρ(ε+H) =
N∑

i=1

αiρiεi. (31)

Multicomponent media are described by the systems of conservation laws and equations of state for the
components. Their number is equal to the number of the components N . Solving all these systems, we obtain the
quantities ρi, Pi, Ui, Ti, Ei, αi, etc. (i = 1, 2, . . . , N) as functions of x1, x2, and x3 for a certain time t. Next, we
average these quantities using Eqs (15), (16), (21), (22), and (27)–(31) and obtain the characteristics

ρ, P, U , E, T, . . . . (32)

The problem at which we arrived can be formulated as follows: What the system of conservation laws for the virtual
continuum should be in order that its solution coincides with (32)?

In the classical continuum model, the macrocharacteristics of materials P , ρ, E, U , T , S, etc., are obtained
after averaging of the characteristics of a large number of microparticles. A description of the averaging rules
is beyond the scope of the present paper and are given in detail in [10–13]. It is important that the average
characteristics of materials (macroquantities) are continuous in the space of x1, x2, x3, t and can be described
by conservation laws, which are closed by equations of state in the form of relations between thermodynamic
quantities. It is known, however, that the equations of state describe the equilibrium states of materials. For
the case of nonequilibrium states, the conservation laws should contain additional forces and fluxes that describe
the relaxation of nonequilibrium states to equilibrium states [9]. The conservation laws for the macroquantities
of a continuum ignoring turbulence, chemical reactions, the effects of fields (electromagnetic, gravity, etc.), and
heat conduction but taking into account tensor forces, energy fluxes, and exchange terms on the right sides of the
equations have the form

∂ρ

∂t
+ ∇ρU = 0; (33)

∂

∂t
(ρU) +

∂

∂xk
(ρUkU) + ∇P +

∂

∂xk
(Fk) = R; (34)

∂

∂t
(ρε) + ∇U(P + ρε) +

∂

∂xk
(FkU) + ∇Q = Φ. (35)
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System (33)–(35) is not closed by the equation of state since the functions ρ, P , U , E, and ε are not related by
an equation of state and are the averaged characteristics of the virtual continuum defined by Eqs. (15), (16), (21),
(22), and (27)–(31).

Relationship between the Conservation Laws of the Macrolevels and Mesolevels. There have
been repeated attempts to pass from the mesolevel in describing multicomponent media to the macrolevel. In
almost all papers (see [2, 4, 5]), Eqs. (2)–(4) were summed so as to obtain Eqs. (33)–(35). We proceed in the
opposite way, bearing in mind that the characteristics of the continuum are introduced by Eqs. (15), (16), (21),
(22), and (27)–(31), and the equations to which they should satisfy need to be found. In this case, it is not obvious
beforehand whether the capabilities provided by (33)–(35) will suffice for this purpose.

We substitute ρ and ρU from (15) and (16) into the law of conservation of mass (33). As a result, we obtain

N∑
i=1

( ∂

∂t
(αiρi) + ∇αiρiUi

)
= 0. (36)

Each term in (36) is equal to zero since it coincides with the law of conservation of mass for the ith component (2).
Similarly, into the law of conservation of momentum (34), we substitute relations (21) and (26), and expres-

sion (16) in the form

ρUk =
N∑

i=1

αiρiUik, (37)

and the relation

Fk = −
N∑

j=1

αiFik (38)

obtained using the averaging rules and (18). Then, Eq. (34) becomes

N∑
i=1

( ∂

∂t
(αiρiUi) +

∂

∂xk
(αiρiUikU) + ∇αiPi −

∂

∂xk
(αiFik) − αiRi

)
= 0. (39)

The condition of coincidence of each term in (39) with Eq. (6) has the form

∂

∂xk
(2αiFik − αiρiUik(U − Ui)) = 0.

After integration, we arrive at the following expression for the components of the force Fi

Fik = ρiUik(U − Ui)/2. (40)

The integration constant is determined from the condition Fik = 0 for U = Ui.
Let us now consider the energy equation (35). We substitute into it the quantity Φ, which satisfies Eqs. (21),

(26), (28), and (38), and the quantity Q expressed in terms of Qi with allowance for (25), namely,

Q = −
N∑

i=1

αiQi. (41)

As a result, we obtain the energy conservation law for the virtual continuum

N∑
i=1

( ∂

∂t
(αiρi(εi −Hi)) + ∇(αiU(Pi + ρiεi − ρiHi)) −

∂

∂xk
(αiFikU) −∇αiQi − αiΦi

)
= 0. (42)

The condition of coincidence of each term in (42) with the energy equation ith of a component (7) has the form

∂

∂t
(αiρiHi) + ∇αi(Pi + ρiεi)(Ui − U) + ∇αiρiUHi +

∂

∂xk
(αiFik(Ui + U)) + 2∇αiQi = 0. (43)
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We assume that the energy flux Qi is expressed in terms of the functions describing the state of the ith component
as follows:

Qi = (Pi + ρiεi)(U − Ui)/2. (44)

In this case, Eq. (43) becomes

∂

∂t
(αiρiHi) + ∇αiρiHiU +

∂

∂xk
(αiFik(Ui + U)) = 0. (45)

Substituting the expression of Fik from (40) into (45) and taking into account relation (29), we obtain the following
equation for the nonequilibrium kinetic energy Hi:

∂

∂t
(αiρiHi) +

∂

∂xk
(αiρiHi(Uk − Uik)) = 0. (46)

Completeness of the Model. System (2)–(5), which is widely used to describe the behavior of the ith
component of multicomponent media, together with the equation εi = Ei +Ui ·Ui/2, is not closed since it contains
seven equations for the required eight functions (Pi, ρi, Ei, εi, U1i, U2i, U3i, and αi). In contrast to the classical
conservation laws for a continuum, the above equations contain the volumetric concentration αi. The fact that
system (2)–(5) is unclosed generates a large number of particular models that assume the absence of nonequilibrium
in pressure, temperature or velocity. The assumption of partial equilibrium of multicomponent media makes the
system closed but reduces the generality and the region of applicability of the model. It was shown above that if
the force component Fi defined by Eq. (40) and the energy flux Qi defined by Eq. (44) are introduced into the
equation for the ith component, system (2), (6), (7) is supplemented by the equation for the nonequilibrium kinetic
energy (46) and the expression of Hi in terms of Ui and U from (29). Thus, the new system of equations for the
ith component contains nine equations for nine required functions and, hence, it is closed.

The force Fi and the energy flux Qi proposed in the present paper are not equal to zero only in the case of
nonequilibrium in the velocity U . They are directly proportional to the difference between the barycentric velocity
U and the individual velocity of the ith component Ui. In the case of equilibrium in U , the quantities Fi and Qi

vanish. We note one feature of the introduced parameters Fi and Qi. They do not contain empirical functions or
constants. The individual features of each component (surface roughness, particle size, sound velocity, etc.) still
should be allowed for by the functions a, ϕ, and ψ in the expressions for Ri and Φi.

It was shown above that in the case of using the averages (15) and (16), summation of the laws of conservation
of mass for the components (2) results in the law of conservation of mass for the virtual continuum (33). Let us
sum Eq. (6):

∂

∂t

N∑
i=1

αiρiUi +
∂

∂xk

N∑
i=1

αiρiUikUi + ∇
N∑

i=1

αiPi +
∂

∂xk

N∑
i=1

αiFik =
N∑

i=1

αiRi. (47)

Using Eqs. (16), (21), and (26), we bring Eq. (47) to the form

∂

∂t
ρU +

∂

∂xk

N∑
i=1

αiρiUikUi + ∇P +
∂

∂xk

N∑
i=1

αiFik = 0. (48)

From Eq. (40) it follows that

ρiUikUi + Fik = ρiUikU − Fik. (49)

We use (37), (38), and (49) and reduce Eq. (48) to the form (34). Therefore, summation over all components of
the laws of conservation of momentum for the ith component yields the law of conservation of momentum for the
virtual continuum.

We make similar manipulations with the energy equation. Before summation of Eq. (7) over i, we bring it,
using the equation

Ui(Pi + ρiεi) + Qi = U(Pi + ρiεi) − Qi

[which follows from (44)] to the form

∂

∂t
(αiρiεi) + ∇(αiU(Pi + ρiεi)) +

∂

∂xk
(αiFikUi) −∇αiQi = αiΦi.
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After summation and using the equations of passage from the sums to the macroquantities (21), (26), (31),
and (41), we obtain

∂

∂t
(ρε) + ∇U(P + ρε) +

N∑
i=1

( ∂

∂t
(αiρiHi) + ∇(αiρiHiU)

+
∂

∂xk
(αiFik(Ui + U)) − ∂

∂xk
(αiFikU)

)
+ ∇Q = 0.

The expression under the summation sign is transformed to (38) and (45) by means of (35). Thus, the summation
of the energy conservation laws for the components results in the energy conservation law for the virtual continuum.

This work was supported by the International Science and Technology Center (Grant No. 1181) and the
Russian Foundation for Basic Research (Grant No. 04-01-00050).

REFERENCES

1. Kh. A. Rakhmatulin, “Foundations of the gas dynamics of mutually penetrating motions of compressible media,”
Prikl. Mat. Mekh., 20, No. 2, 184–195 (1956).

2. A. N. Kraiko, R. I. Nigmatulin, V. K. Starkov, and L. E. Sternin, “Mechanics of multiphase media,” Itogi Nauki
Tekh., Gidromekhanika, 6, 93–174 (1973).

3. S. S. Kutateladze and M. A. Styrikovich, Hydraulics of Gas–Liquid Systems [in Russian], Gosénergoizdat,
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