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METHODS OF SHOCK WAVE CALCULATION*

V.F. KUROPATENKO
P.O. Boz 245, Snezhinsk, Chelyabinsk region, Russia 456770

Certain manipulation with the mass, momentum and energy conservation laws, written
in the form of partial differertial equations for an ideal non-heat- conducting medium, give
a corollary saying about entropy conservation along the particle trajectory.

Conservation laws on the surface of a strong shock are algebraic equations showing
that entropy grows across the shock wave. This is the fundamental difference between a
shock wave and a continuous solution. {5

We will discuss only the shock wave methods that treat the strong dlscontmuxty as a
layer of a finite width (the shock is smeared within an interval of a finite length called
distraction) comparable with the size of the mesh cell. Since states behind and before
the shock-are related, then there must exist a mechanism that ensures the growth of
entropy in the shock:distraction: region. Only four principally different mechanisms of
energy dissipation in the distraction region are known [1-4]. Consider four shock wave
methods corresponding to these four mechanisms. Many difference schemes can be used
to implement them. I suggest that we look only at those that were proposed by the authors
of these four methods [1-4]. B.L. Rozhdestvensky and N.N. Yanenko [5] were first to try
to compare these methods, focusing on approximations and stability.

In this presentation I will focus on energy dissipation, shock distraction and mono-
tonicity.

1. NEUMANN - RICHTMYER METHOD

The basic idea of the method is that energy dissipation and strong shock dlstractlon occupying
several mesh cells are provided by adding an artificial viscosity term to the d1fferent1al equatlons

of motion and energy [1].
Ref. [1] proposes the artificial viscosity term in the form

_C*Ag3 8U | U
1% 63:0 80:0

(1)

and offers a difference scheme then slightly modified in [6]. Difference schemes with the artificial
viscosity term may differ, as well as expressions for q [7,8]. The difference schemes may be either
explicit or implicit. But given the presence of the artificial viscosity term, all such schemes are
implementations of the Neumann-Richtmyer method.

In the difference scheme proposed in [1], thermodynamic quantities are defined at the centers
of mesh intervals for m, and velocities and coordinates are defined in mesh nodes. Equations
n [6] are written as:
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Equations (2) and (3) form a system of non-linear equations for P"*! and E™*!.
The method is conditionally stable. The ratio between time and space steps & = a7/h
depends on an empirical constant, k, and according to [6], the actual stability condition is

&€ b, 2,

Ref. [1] proposes a method of shock distraction analysis. For this purpose they add the
artificial viscosity. term, ¢, in form (1) and go to a self-similar variable

E=m— Wt
This yields
WV'+U' =0, (4)
WU~ (P+q) =0, (5)
E' +(P+qV' =0, (6)

where priming means differentiation with respect to &.
For the ideal gas

PV =(y-1)E (7)
and ¢ taken in the following form:
k*R*W?
¢=——", (8)

equations (4)-(8) reduce to the single equation for V'

2k*h? (%—92 +(y+ D) (V=1 +2, (V- V,) =0. (9)

[ 2 : 1%
£ =kh 7+1ar051n (’7—(74—1)%).

3khm 2 i
ForV=V,&=§= —5 / poar| and fot 1% : i, respectlvgly,

£=1f= —kh\/’.yil-arcsiril(fy —(y+1) —“%) ;

Its solution is
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. . ad EIg . f AET s
The maximum compression V; = 1% is achieved across the infinite shock with Py = 0.

kh /
In this case & = ——27£ P P So, the width of the shock layer, A, and the strong shock

distraction, D, in the Neumann-Richtmyer method are:

3 A€ 3
A =& — & = 2khmy | ——, Dyp = = e
6 50 61 T 7+1, NR — h = 2knw 7+1.

The effective distraction, Dyg, is determined by finding points where the straight line V' (¢)
with the maximum slope

7%
VI 5 i3 0
n(© khy/2(y+1)
intersects with V5 and V;
Vo-Vi
A€ = o (10)
Substituting the expression for V;, and the minimum specific volume
=7
i = —V,
1 v sy 0y

and dividing by h yield
e [ 2
2. LAX METHOD

The basic idea of this method [2] is that energy dissipation is provided by the principal terms
of approximation errors. Later this method was called the approximation viscosity method.

Difference equations are obtained by integrating the conservation laws over the mesh cell
and applying the mean-value theorem:

n+1 n
1/;+0 5 Yi+0,5 _ Ui:—l - U}

- g =0, (11)
Uﬁ(—)ls —Ulkos B = &
— + 3 == { (12)
5?101,5 z+05 (PU)z+1 kil (PU): _
- - =0, (13)
Erls = elfos — 0,5 (UL5h)", (14)

where the values of sought functions V3,5, Pligs, Ulygs, BT o5 and €7y 5 are defined at the

centers of mesh intervals for m at times ¢", and auxiliary quantities P, U} and (PU)! are

defined at the centers of the time steps, 7, at the faces of the mesh cells w1th coordinates m;.
Equations (11)-(14) are general until equations for Uy, P* and (PU)! are specified. Ref.

[2] proposes a difference scheme that defines auxiliary quantities U* and P* across shocks and
continuous solutions with the following equations:

1 n h n n
Ui = 9 (U+05 + Ui-O,S) w 27 ( i+0,5 — %—0,5) ’ (15)
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* 1 n h n n
P = 3 (P+05 +& 05) o ( 40,5 Ui—0,5) ; (16)
* 1 n n h
(PU)Z' = 5 ((PU)i+O,5 s (PU)i—O,S) ™ 57‘_( i+05 — Ei- 05) (17)

Difference equations (11)-(13) and equations (15)-(17) for the auxiliary quantities approximate
the differential conservation laws with approximation errors

10%V  10°V h?

U= 5w T agm TOTH), (18)
102U 16%U h?

w2:——2—w7'+55"——+0( ); (19)
10% 1 0% h?

W3 = _§8t2 55}}?—‘ + 0] (T hz) (20)

When h — 0 and 7 = const, the associated terms in (18)-(20) tend to zero. However, it
2

h
goes worse with 7. When 7 ——>O, the terms proportional to — in (18)-(20) tend to zero if

2

only lim — = 0. If not, equations (11) (13) do not converge to the initial differential equations

70 T
h—0

because the reduction of 7 at constant h increases the error.
According to [9], the equation of entropy production for difference schemes with independent
Wi, Wy, and W3 is
0S
T—ég‘ = W3z — ULU2+PLA)1. (21)
Substitute Egs. (18)-(20) into Eq. (21) and using differential equations replace the second

: o oS
time derivatives in Eq. (20) by m-derivatives. Also assume that I ~ 0 and then the entropy
_ m

production equation takes the form:

as hi{l—a?) [ 5 (0V\2 [OU\?
For & = e — 0, the rate of entropy production approaches infinity. So, the difference scheme

of Lax is extremely dissipative, according to [8].

Consider the distraction of a stationary discontinuity in the Lax method. For this end write
difference equations (11)-(13) in the differential form with approximation errors (18)-(20) and
go to the variable £ = m — Wt. We obtain

2

WV AU+ 1 (1= a?) V' 10 (2, 17) =

2
WU P+ (1) U0 (5% 07) =0,

h2
We' — (PU) + b (1-&*)e"+0 (% h%) =0.
Integrate these equations with respect to £&. Find constants of integration for £ = +o0, where
U = Uy, V:%,PzPo,Eon,z-::%Ug—l—Eo, V'=0,U"=0, P'=0, ¢ =0. This yields

WV +U + AV =WV, — Uy + O (72, k) =0,
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WU - WUy — P+ Py + AU + 0 (%, h?) =0,
We — Weg — PU + Ae' + Pyl + O (72, h%) =0, (22)

h? .
where 4 = —— (1 — ®?). Substitute the Clapeyron equation into (22). Then express all quanti-

ties in terms of V' and derivatives in terms of V'. We obtain an ordma.ry differential equation
for the profile V' (£)

44V AV (= V)(V - TA)
Wy +1) d€ %

=0 (%, 1?), (23)

-1 2 2
14‘ 7 ¥ S+ 1 ( %LVQ) ) . Omitting the second order infinitesimals gives the fol-

where V; =V} (
lowing solution:

2h% (1 — x?)
TW(v+1) (Vo -V

£ = 5 (G (V - Vi) - Voln (Vy = V). (24)

It follows from (24) that { =& = +oofor V=Vyand ¢ = ¢, = —co for V = Vi. So, the strong
shock distraction in the Lax method is infinite:

DL=OO

To determine the effective distraction, differentiate (23), and find Vj; and the maximum
value V}, for V" =

— ViV, v,(4—2§7+1 (\/" Vi)' (25)

Using (23) and (10) yields

pe _ 20— %) (W+W) o0
R ER A
It is seen from (25) that D} — 0 for & — 1 and Df — oo for & — 0 or V; — Vo.
Finally, check monotonicity of the Lax scheme. Go from P and U to invariants:
a=P+aU, [=P-al.
Express P and U in terms of a and S:
P=0,5(a+p#), U=0,5(a—p)/a. (27)
For a matter with EOS
P=a’(Vp-V), (28)

replace V by P in Eq. (11). We obtain

s 1 17a?
| - Pib = 3 (Phis+ Plys) - W (U5 — Ul os) - (29)
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Substituting (27) in (29) and (12) yields

A s+ Bl = 0,5-0f o5 (1+2)+0,5-0f ;5 (1 — &) 40,585 (1 — 2)+0,5- s (L+2e),

(30)
afos—Biios = 0,50l g5 (1 +2)+0,5-af 1 5 (1~ 2)—0,5- B 5 (1 - 2)=0,5-67, 5 (1 +(%))-
31
Sum (30) and (31), and then subtract (31) from (30)
Krols—o 5(1-a)aly5+0,5(1+ =)0l
(32)

s =0,5(1+2) B 5+0,5(1—2) B,

It follows from (32) that for 0< & <1, all coeflicients of the invariants in the right-hand sides
are nonnegative and hence the difference scheme by Lax is monotonic by the Godunov theorem.

3. GODUNOV METHOD

In this method all quantities that characterize the response of media to loads are defined at
the :.centers of mesh intervals for m. Coordinates z; are defined in mesh nodes. The difference
equations are written in forms (11)-(13). Auxiliary quantities P*, U} are defined as follows. All
tabular functions at time ¢t are assumed piecewise constant. Therefore, arbitrary discontinuities
appear in nodes. They split at ¢ > ¢". Pressures and velocities across the contact discontinuity
are taken to be auxiliary quantities. If an arbitrary discontinuity is such as a shock wave
propagates to the right of z; and a rarefaction wave does to the left, then equations for the
quantities across the contact discontinuity are

*

Pl +ai o5Uf = Plos+ailo5Ul s,
* * __ pn n

B =Wii05U = Plios — WirosUlos:

Generally Wi.5 depends on P} and U] because the problem of discontinuity splitting is non-
linear. However, for a weak shock with Wii05 = a + O(h), ai—o5 = a + O(h), equations for
P*, U; take the form

Pf =0,5(Plos+ Plos) —0,5a (Ulios — Ulos) (33)

Ui = 0,5 (Ultos + Ullgs) = 0,5 (Plios — Pios)/a- (34)

Write difference equations (11)-(13), (33) and (34) in the differential form. The approximation
errors wi, wy, and ws are:

T0°V  h O%P

_ o 2 12
1T T o 2a8m2+0(T’h)’
70U  ah 0?U
w==55m " 5 am TOHH),
T 8% 82U ah (OU\®> h (OP\* h _&°P )
‘*’3"5552‘“‘”%5 7(%) *(55) * 22 ma TO ).

Since wi, we, and w; are independent, then, by [9], the right-hand side of the entropy equation
is in form (21). Substitute w;, wy, and ws in (21). Then using differential conservation laws and
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their derivatives, replace time derivatives by m-derivatives. This gives the following equation
of entropy production:

o= g t-m ((G) e (2) ) oy, )

It follows from (35) that for & = f}—;—t < 1, this difference scheme, being an acoustic approxima-

tion to the Godunov scheme, is extremely dissipative. Since the principal term in the right-hand
side of Eq. (35) is nonnegative, entropy grows across both shock and rarefaction waves. The
rate of entropy production is limited and achieves maximum at & = 0:

oS h oP oUu
T—= e el 2
at " 2w ((8m) M <8m) )
Analyze shock distraction. For this end go to the self—simila,r variable £ = m — Wt and write
the difference equations in the differential form:

2
WV,+ U/ s TI;I/ VII " i%P”-i'O (72,h2) — 0’
WU — P’ — W v+ hWU”+O( 2 p?) =
2
we' — (PUY - e 4 hW (UU) + == (PP') 40 (2, h?) =

2 e 2w
Integrating with respect to £ and ehmmatmg P, U, ¢ P, U’ € glves the followmg equa,tlon
for V(§) for the ideal gas: o 3

2h(1—z) dV (V“‘Vo)('V‘Vly  2 2y o
AT v TOE) =

Its solution is
2h (1 — =)

(v+1) (Vo — W)

§= Viln(V =W1) =Vl (Vo - V)).

From this equation:
§ =& =+oompu V =1},
=& =—ocompuV =1,

So, in the Godunov method, the shock distraction for & < 1 is infinite:
DG = 00

and for & = 1, Dg=0.
The effective distraction is obtained in the same manner as in the Lax method:
Dh=—2 (1-z) (\/Vo+\/VI>
(ry+1) VAEVAA
To check the Godunov scheme for monotonicity, go to the invariants. Express P and U in

terms of o and $3, and for equation of state (28), replace V by P in Eq. (11). For a = W, we
obtain

1 1
afios + Bios = Ofos + Blhos + @ (BR1s — Ohos — Biros + 0 gs) (36)
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afos = Bitos = Ofvos — Bluos + 2 (=Biis — &vos + Blros + o os) - (37)
Summing (36) and (37), and subtracting (37) from (36) give equations for a and §:

n+l __ n n
Qitos = Oios(l — @) + of g 52,

‘ Brios = Bros(1 — &) + B 5.
For 0 < & < 1, all coefficients of oo and § are nonnegative and by the Godunov theorem, the
difference scheme, being an acoustic approximation of the Godunov scheme, is monotonic.

4. KUROPATENKO METHOD [4]

The basic idea of this method is as follows. All mesh intervals (basic and auxiliary) are referred
to one of two types depending on solution: compression or rarefaction. The former is treated
as shock compression defined by the local (only within the current interval) shock wave. States
before and behind the shock wave relate as conservation laws:

Pl—PO—W(Ul-'UQ):O, (38)
U —Ug+ W1 —W) =0, (39)
%% .
P — RoUs = W(Ey = By) — —(Uf = Ug) =0. (40)

The state before the shock (Fy, Vo, Ep, Up) is the solution in the mesh interval. One of
the quantities, either on the boundary or in the neighbor interval, is taken as the quantity
behind the shock. Other quantities behind the shock are determined from Eqgs. (38)-(40) and
the equation of state. They are taken as auxiliary quantities. For example, if define U [4], then
Py, V1, Ey, and W are sought from Eqgs. (38)-(40), or if define P; [10,11,12], then Vi, E;, Uj,
and W are sought.

The method can be implemented on different meshes [4,9-14]. Discuss two of them.

4.1. NON-DIVERGENT SCHEME

Meshes proposed in [4] for velocity and thermodynamic quantities differ. Quantities P, V,
and E are defined at the centers of mass intervals, and velocities are defined in nodes t*, m,;.
For a compression wave, the difference equations take the form:

Uz'nH*U’n ?+05“?—05
7 2 = 1 . — O

e , (41)
it = g + TUMY, (42)

3;7.”'1 —_ xr.""'l h . — xh
Vn-}-l =P 1+1 i 7 h = +1 7 43
i+0,5 h ‘/;10,5 ( )

n +1

Bty — Elos+0,5 (-P7+0.5 + F?+0.5) (VzT(;ls - izo.s) =0. (44)

The dynamic pressure P is a solution of these equations across the strong shock. Before the
shock, we take quantities in the mesh interval at time t®

—_— n — 2 —_ n
Vo= V;+0,57 PO - Pi+0,5’ EO - Ei+0,5’
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and as the velocity jump we take the difference of U in nodes at time t*+!
AU = Uy — Uy| = [Ui’fil - Ui"“{.
Substituting these quantities in the equations for the strong shock yields
Pilos = Plhos — W (UZ - U™, (45)

where W depends on Py, Vy, Ey and AU.
For a simple equation of state for condensed matter

P = (y = 1)pE + Cy.(p — por),

Eq. (45) takes the form

—=n-+1 n
Pilos = Plios + AU +/ (BAU)? + (ayo5)° AUZ, (46)
where b= o0 ..
Eq. (46) has two asymptotics:

1. Weak shock, bAU < a, 5. In this case the dynamic pressure is a linear function of AU:

—n+1

Pios ~ Pligs + afy g sAU. (47)

2. Strong shock, bAU > a5 In this case the function is quadratic:

—n+1 v+ 1
Piros ™ Plos + 5Pl sAU . . (48)

Using these asymptotics, M. Wilkins [8] introduced a linear-quadratic artificial viscosity.

Taking Taylor series expansion of all quantities in Eqgs. (41)-(44) gives independent approx-

1imation errors:
. ——182U+hW62U+ 0’P
2= T om? " 5tom

70U 7120°U
h? 33z
w5:—ﬂ%§+0(h3), (51)

T (82E 0P oV 82V) oV oU

+0 (7%, 1?), (49)

__ = _ =z -~ gl 2 1.2
wi==5\E "o tar )t MW o g, TO (TR Th). (52)

Differentiate (42) and (43) with respect to ¢ and m, and using the equation
oP  ,0U

a — = Wio

ot om

write wy as

ay [(OV)?
Wy = hW (1 — EE'\—]'V“) ("a—t-> + 0 (7'2, h2) .
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Since w7 is independent, then the entropy production equation for W = a + O(r,h) takes

the form: )
oS 3 oV 2 ;2
T(@t)m_hw(l 88)(875) + O(7%, h*).

What about distraction in this non-divergent scheme? As earlier, go to the self-similar
variable { = m — W¢. The differential conservation laws with approximation errors (50), (51),
(49) and (52) are

WU — P — W —U"+mWU" —TWP"+ O (%,h?) =0, (53)
Wa'+U — %KU’ +0 (r*) =0, (54)

g -V+0(r?) =0, (55)

E'+PV' - ?f (E" = P'V'+ PV") = hWV'U' + O (7*,h*) = 0. (56)

By differentiating (53)-(56), eliminating z', E", U’, P' and integrating with respect to &
we obtain a differential equation for V' (§) that is identical with the equation in the Godunov
scheme. Thus, the first differential approximation of the Kuropatenko non-divergent scheme
has the same distraction that the approximation of the Godunov scheme.

Is the scheme monotonic? For equation of state (28) across the compression wave, we write
the consequence of Eqgs. (41)-(44) as

Pz'%ls Pllos + = (UT:EI Urtt) = 0. (57)

(2

Substituting (45) in (41) yields

-
Uptt - Up + E(ﬂ’i—o}s — Plys) — w(Uh, — 22U + U ,) = 0. (58)

Substitute (27) in (57) and (58)
?:015 + Z:rols +w(a - B - e(aft! — g0 = o5t Bivoss (59)

oftt = Bt =af — B — =(a z+05+ z+05)+3e( - 05"‘ 7015)+
+3e(a?+1 - ﬁ?ﬂ) - 233(0‘1' = @n) + @(af , — 1) (60)

Write Eq. (60) for 7 + 1 and multiply by —ée, then multiply Eq. (60) by &, and add all to Eq.
(59). For S=const, we obtain

b :
ooy = 0o + (32° — @) (afy, — of) — 2 (e — o)+

2 n—1 2 n—1 2 n—1
+etoyiy s — 2870 s T &0 5

Take the Taylor series expansions of all a in the right-hand side. We obtain the following

equation: ,
Ooa 0«
oMt =al' o5 — ®h ( ) + &?h? (—) + O(h®). (61
+0,5 +0,5 am Er amg Yy )
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Decrease the index by 1 and subtract from (61). Then take the Taylor series expansions at ¢™
and m; of all quantities in the right-hand side of the obtained equation. This gives

. . . da 0?

om

For f=const, the compression wave propagates in the positive direction. Since on the backside
of the compression wave o/ < 0, o” < 0, then for 7 ~ 0 (e ~ 0), it follows from (62) that
A? < 0. In order that A} remain nonpositive, it is required that the following condition be
satisfied

0%a
dm?

i
om

So, the scheme is conditionally monotonic.

—Ta > 0.

4.2. DIVERGENT SCHEME [10]

All thermodynamic quantities and velocities are defined at the centers of mesh intervals
and mesh nodes have coordinates t" and m;. The difference equations are in form (11)-(14). To
define auxiliary quantities P, U/, the solution in the auxiliary interval m;_¢5 < m < Myt0.5 1S
divided in two: rarefaction and compression.

Compression wave. Auxiliary quantities are found from equations (38)-(40) for the strong
shock surface. Quantities across the discontinuity are defined as follows.

If 1&0.5 - UZT)—J-O..S < O, then

LU =0 (PV,EU),= (P,V,B,U) g5 for Plys> Piios)

2.0 =Ukos (BV,EU)y=(P,V,E,U)},; for Plys< FPlos:

All other quantities subscripted 1 are found from (38)-(40). If consider only W;0, then P U
are defined by equations
U'=Ulgs, Pr=Plos— W (Ulos— Ul os) - (63)

2

Check monotonicity of this scheme across the compression wave. Constitutive equations
with auxiliary quantities (63) take the form:

’ Ta?
n+l __ n n n
Pi+0.5 = PH—O.S - _h_ ( i+0.5 Ui*O.S) 3

T »
n+l __ 11 - n _ pn _ n s n n
i+05 = Vitos ~ 7 (Pi+1.5 Pllos—a (Ui+1.5 2Ul 5 + Ui—0.5)) .
Replace P and U by their expressions for the invariants o and S
nt1 ntl _ o p R AR s i (N n n n
Oitos + Bivos = Ofyos + Biros — 2 (005 — Blos — A o5 + Bios)
n+1 n+l _ .n 3 n n b n n n
®itos — Bivos = %itos — Bivos — & (ai+1.5 + Biis = Qo5 — ,3i+o.5) +
n n- n n n n
+ & (ai+1.5 = Biiis — 20505 + 26005 + 005 — Bl os ) .

Sum these equations

1 :
0itos = 0fos (L — ) + o) g5 — @B, 5 + 4l o5 — 2Bl g 5- (64)
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If B=const, Eq. (64) takes the form
affos = afros (1 — 2) + afl g 52.

Both coefficients are positive for 0< s <1 and hence the divergent scheme [10,12] is monotonic
across the compression wave.
Now consider shock distraction. For this end write difference conservation laws (11)-(14)
and auxiliary quantities (63) in the differential form with approximation errors:
T0*V  ho*U

“==558 "gam tO M),

_ U 08U ho’P

27 T o om2 2 0m?
78 ho [, 0P\ hO [ _OU o ( 08U )
“3—‘5w—§a—m((]5;n‘)+§%(f’55)+hwa—,n‘(U—am)w(T7’1)-

Go to the self-similar variable £ = m.— Wt. Then the equations take the form

+0 (7%, h?),

3 -t : Vg * 2 : 3 1
WV + U ~'I—'2W—-V" - gU” +0 (%, h?) =0, (65)
. W2 g
WU — P — T—Z—U” =~ g P! AWU + O/ 1) =0, (66)
W h h ! !
We' — (PU) — %—-PU” -5 (UP) +5 (PUY —hW (UU) + 0 (%, h%) =0.  (67)

Integrating with respect to & gives

2 h
WV+U—T‘;V V’—-§U’=W%+Uo+0(72,h2), (68)
TW?2_ . h_, ; 2 ;2
WU~ P~ — U—§P+hWU=W0U0—Po+O(T,h), (69)

w h h :

We — PU = —— (PU)' = SUP' + 2PU' = kWUU' == Weo = R + O (%, 1%) . (10)
Using (65)-(67), replace U’ and P’ in (68)-(70) by V. Then using (68)-(70), replace U and P by
V. We obtain an equation describing the profile V' (¢) for the ideal gas. The equation is identical
to that in the Godunov scheme. Therefore, the distraction and the effective distraction in this
scheme are identical with D, and D3.

5. OTHER DIFFERENCE SCHEMES

5.1 LAX-WENDROFF SCHEME

The scheme of Lax and Wendroff [15,16] is worthy of considering because of its rather wide
use. Lax and Wendroff proposed that auxiliary quantities P, U;" in (11)-(13) should be defined

as
T

B
2
Pz'* = Pin - 55 (af) ( iT-Li»O,S - in—O,S) - Z|G?+o,5 - a?—o,s‘(Uiio,s - in—o,s),
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B
Ui =0Up - 2h (Pzios Plos) = ) |aFy05 — af_ 05[ ihos = Plos)

4 (a?

)

'3 n n 7 n T B n n
(PU) (P U (P (PH—OS Pi—O.S) +(a; ) U; ( i+05 — i—O,S)) (ﬁ‘f‘ Wlai+0,5—ai-0,5,)

where

1
P = B (a?+o,5 + a?—o,s) )

DN

(P+05+Pn05) a; =

n 1
Ut (U+05+Uin—0,5): (PU); = (PU)H-OE)_\L(PU)'L 0,5
2

Using these equatlons for shock wave computing is the same as adding three artificial viscosity
terms:

_ _B,,|0a0U _ _Bh*| oa|oP
=" omlom T 12\ omlam
Bh?|8al| [ 8P oU
W= TL 2 | om (Pam Uam)

They are not approximation viscosities and therefore, the Lax-Wendroff scheme is an implemen-
tation of the Neumann-Richtmyer method. This scheme has an empirical constant, B~ 1—2,
defining the boundary of the stability region. The stability condition is

1
(e + §B) <1
The scheme is non-monotonic.
5.2. EULERIAN DIFFERENCE SCHEMES

These difference schemes are widely used in aerodynamic calculations. In rather detail their
merits and shortcomings are considered in [17,18]. The only thing I would like to attract your
attention to is that all these schemes can be considered as consisting of two steps. At the first
step the mesh is Lagrangian and one of the shock wave methods in the Lagrangian formulation
is used. During the second step the quantities are recalculated to transfer from the Lagrangian
mesh to the Eulerian one. The solution obtained at the first step permits the approximation
of mass, momentum and energy fluxes acting across Eulerian cell faces without disturbing the
conservation laws.

5.3. NON-MONOTONY REDUCTION

Obtained solutions can be made monotonic by using special methods that allow their
smoothing without disturbing the conservation laws. These methods can be used along with any
of the above shock wave methods. As a rule, these methods are developed without considering
the problems of energy dissipation and entropy conservation across continuous solutions.

6. CONCLUSION

In conclusion I would like you to look at this table and compare the basic parameters of the
methods we have just discussed.
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Difference Schemes
Parameter | Neumann- Kuropatenko
Richtmyer Lax Godunov | Non- Divergent
divergent
1 | Distraction, 2 00 00 00 00
2k
D v+1
2 | Effective 9
: ) 2 |20-2) (VI +VVi 20 -=) (Vo + VWi
distracti- 2k
D 7+1 | 20+ \V%h- v +D) \Vie—- v
3 | Monoto- No Yes Yes Condi- Yes
nicity tional
4 | Empirical k No No No No
constants
5 | Stability aeg—‘é/—-z © <1 2<l |e<l |=<1
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“\_DISTRIBUTED AND COLLABORATIVE
VISUALIZATION OF SIMULATION RESULTS
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e-mail: lang@hlrs.de

The visualization group of the High Performance Computing Center Stuttgart (HLRS)
has developed a distributed software environment, that allows to visualize simulation re-
‘'sults either on a desktop computer or on stereo projection environments. It supports the
coupling of ongoing simulations with visualization thus enabling simulation steering. In
addition it is possible for multiple engineers or scientists at different locations to discuss
the same visualizations: and interact with them. The software architecture was designed.
to make efficient use of distributed computing resources as well as high speed network-
ing infrastructures. The software architecture will be explained together with results of

"' 'projects in which it was used.

1. Introduction

Scientific Visualization is a support technology that enables scientists and engineers to under-
stand complex relationships typically represented by large amounts of data. The visualization
process chain is a part of the overall simulation process chain. Its elements and their inter-
relationship represent the characteristics of scientific visualization and its usage in different
application fields. By combining visualization techniques datasets can be analyzed and simu-
lation models can be explored. Additionally engineers can judge complex geometries and use
visualization to communicate complex content and support decision processes. Virtual reality
techniques can further improve this perception process.

With the rapid advances in hardware technologies the data volumes resulting from measure-
ment and computing devices increase very fast. Data as intermediate carrier of information can
not be immediately understood by humans. Visualization is the process to convert different
forms of information into a visual representation, thus allowing humans to recognize states,
structures and behaviour. The term scientific visualization was introduced in 1987 ([1]). Since
then visualization is evolving as an own discipline which has been structured into scientific and
information visualization. While information visualization focuses on the visual representation
of non-spatially structured information, scientific visualization is mainly oriented towards the
visualization of data being defined on multi dimensional domains. Visualizing data distributed
in 3D space enables humans to make use of their evolutionary developed capabilities to dis-
cern structures at certain locations or see spatial transitions in structures. This accelerates the
comprehension of complex structures or enables it at all. The spatial recognition capabilities
are complemented by further capabilities such as the recognition of movements as well as the
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