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DETERMINATION OF THE TEMPERATURE DEPENDENCE 
OF HEAT CAPACITY FOR SOME MOLECULAR CRYSTALS 
OF NITRO COMPOUNDS

Yu. M. Kovalev and V. F. Kuropatenko†  UDC 532.593+536.715

An analysis of the existing approximations used for describing the dependence of heat capacity at a constant volume 
on the temperature of a molecular crystal has been carried out. It is shown that the considered Debye and Einstein 
approximations do not enable one to adequately describe the dependence of heat capacity at a constant volume on 
the temperature of the molecular crystals of nitro compounds. This inference requires the development of special 
approximations that would describe both low-frequency and high-frequency parts of the vibrational spectra of 
molecular crystals. This work presents a universal dependence allowing one to describe the dependence of heat 
capacity at a constant volume on temperature for a number of molecular crystals of nitro compounds.
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Introduction. The promising use of explosive processes in a number of branches of modern engineering is closely 
linked with the development of the mathematical models that adequately describe the physics of fast processes. The laws 
of mass, momentum, and energy conservation serve as the basis of the mathematical models of the mechanics of continua, 
thermodynamics, electrodynamics, etc. The conservation laws do not, however, belong to a closed system. The dependences 
between the quantities entering into the conservation equations are required, namely, the equations of state. They determine 
the fundamental relationship between the thermodynamic parameters, which does not depend on the method of attaining 
particular values of these parameters. The mathematical models of the thermodynamic properties of substances in different 
areas of the phase diagram are being constantly improved. An analysis and checking of the adequacy of proposed mathematical 
models require the existence of experimental data in a wide range of temperatures and pressures. In spite of the fact that a 
rather great number of works, both experimental and theoretical, are devoted to the solution of this problem, the theory of 
the construction of the equations of state of the molecular crystals of nitro compounds is very far from complete. The reason 
for this is that theoretical determination of the dependences that characterize the behavior of solid explosives, which relate 
to molecular crystals, is complicated by a large number of internal degrees of freedom of the molecules entering into the 
composition of molecular crystals of nitro compounds.

In connection with the diffi culty of calculating the interparticle interaction in molecular crystals, the description 
of thermodynamic characteristics is usually given within the framework of semiempirical approaches when the functional 
dependence of the thermodynamic potential is determined proceeding from theoretical considerations, whereas the choice of 
certain coeffi cients of this dependence is calculated from the condition of the best fi t to experimental data.

The thermodynamic properties of a substance are determined entirely if one of the thermodynamic potentials is 
known. It is convenient to proceed from the determination of the free Helmholtz energy F(V, T) which is most simply 
associated with the model of substance structure [1–3]:
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Here U is the energy of interaction between atoms, V is the specifi c volume, T is the body temperature, h is the Planck 
constant, k is the Boltzmann constant, ωα is the frequency of normal vibrations, and E is the energy of zero vibrations. 
Summation in formula (1) is made by both the frequencies of vibrations of the molecules that form the crystal and by the 
frequencies of vibrations of the atoms entering into the composition of the molecules.

If the form of the function of the free Helmholtz energy F(V, T ) is known and all the values of the parameters 
entering into the description have been determined, differentiation may yield expressions for all the measured and calculated 
thermodynamic quantities:
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At the present time, it is thought that the equations of state of molecular crystals contain two components: thermal 
and "cold" [4, 5]. The thermal component is determined by the vibrational motion of the molecules that enter into the 
composition of the crystal, whereas the cold one depends on the change in the energy of interaction both inside the molecule 
and between the molecules entering into the composition of the crystal depending on the volume. The relationship between 
the thermal and cold components is described by the dependence of the Grüneisen coeffi cient on the specifi c volume and is 
one of the basic problems in constructing the equations of state of solid bodies. The dependence of the Grüneisen coeffi cient 
on the specifi c volume may be determined by the Landau–Slater, Dugdale–McDonald formulas, and others [1].

The fi rst step in modeling the thermal component of the equations of state is the determination of the functional 
dependence of heat capacity on temperature. In view of the fact that organic molecular crystals are thermally low-resistant, 
easily fusible, and sublimable already at low temperatures, experimental dependences of heat capacity on temperature in a 
wide range are known for a narrow range of substances in a gas phase [6, 7]. At the same time, of interest for a wide variety 
of fast processes is the behavior of solid organic substances in the region of high pressures and temperatures, experimental 
data for which on the dependence of heat capacity on temperature are absent. The only possibility of estimating the behavior 
of heat capacity in this case is the development of different computational schemes [8, 9].

The aim of the present work is the development of a computational scheme for determining the dependence of heat 
capacity on temperature for molecular crystals of nitro compounds that would rely on the existing experimental data [10, 11].

Analysis of the Approximations Used for Describing the Dependence of Heat Capacity on Temperature for the 
Molecular Crystals of Nitro Compounds. To determine the dependence of heat capacity on temperature for solid bodies 
increasing use has been made of the Debye or Einstein approximations. The most simple method of obtaining the values of 
the characteristic Debye temperature is an analysis of the dependence of heat capacity on temperature. It is just here, however, 
that the problems start to arise. The Helmholtz potential easily allows one to determine heat capacity at a constant volume CV, 
whereas experiment yields data on heat capacity at a constant pressure CP. Since at the temperatures at which experiments 
are carried out, anharmonicity is present, the heat capacities at a constant volume and at a constant pressure do not coincide. 
It can easily be shown that the coupling between the heat capacities is determined by the equality
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where α is the isobaric expansion coeffi cient and βT is the isothermal compressibility. One can easily determine the relationship 
between heat capacities and compressibilities:
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where βS is the adiabatic compressibility. In view of the fact that the adiabatic compressibility is associated with the adiabatic 
speed of sound CS by the relation of the form

2 ,S
S
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β

one can easily determine the connection of the adiabatic compressibility and adiabatic speed of sound with the thermodynamic 
parameters determined experimentally [12, 13]:
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The above relations allow one to determine an expression for heat capacity at a constant volume that involves the heat 
capacity at a constant pressure, isobaric expansion coeffi cient, adiabatic speed of sound, and the temperature:
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As the initial data for determining the initial thermal state of the molecular crystal use was made of experimental 
values of the corresponding quantities cited in the handbook of the Livermore [10] and Los Alamos National Laboratories 
[11]. For some crystals of nitro compounds Table 1 presents the available experimental data of heat capacity at a constant 
pressure, isobaric expansion coeffi cient, and isobaric speed of sound. The experimental data from Table 1 allow one to 
determine the heat capacity at a constant volume and test various models used for describing its behavior depending on 
temperature.

Debye Approximation. Following the Debye theory, in the vibrational part of the free Helmholtz energy we will 
replace the real spectrum of vibrations by a parabola cutting it off at a certain frequency. For this purpose we will rewrite 
expression (1) for the free Helmholtz energy in the form
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where R is the universal gas constant divided by the molecular mass of the substance μ, N is the number of atoms in a 
molecule, and θD is the Debye characteristic temperature.

Integrating over parts the expression for the vibrational component of the free Helmholtz energy F(V, T) (2) and 
introducing the Debye function D(x) by the formula given in [12, 13]
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we obtain an expression for the component of the free Helmholtz energy in the terms of characteristic temperatures:

 
D

0 D3 ln (1 exp ( )) ,
3

DxF U E NRT x⎛ ⎞= + + − − −⎜ ⎟
⎝ ⎠  

 (3)

where xD = D
T
θ . Differentiating expression (3) twice with respect to the temperature at a constant volume, we will obtain an 

expression for heat capacity at a constant volume in the Debye approximation in terms of characteristic temperatures:

TABLE 1. Thermal Parameters for the Equation of State of the Crystal

Parameters
Name of compound

Hexogen PETN TATB Trotyl

μ, kg/kmole 222.13 316.50 258.18 227.13

ρ0, kg/m3 1806.0 1778.0 1937.0 1653.0

CP, kJ/(kg·K) 1.1260 1.0880 1.0054 1.1260

CV, kJ/(kg·K) 1.0533 1.0105 0.9995 1.1222

T0, K 298.0 293.0 293.0 293.0

CS0, m/s 2650 2320 1.4390 2200

α·10–3, K−1 0.1927 0.2300 0.0995 0.0516
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It can easily be shown that the expression in parentheses on the right-hand side of Eq. (4) is the result of the integration by 
parts of the Debye heat capacity function DC(x) defi ned by the following expression:
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The Debye function D(x) and the Debye heat capacity function DC(x) are tabulated and presented in the reference 
literature on statistical thermodynamics [12]. The values of the characteristic temperatures in the Debye approximation are 
presented in Table 2.

In accordance with the Debye theory, the characteristic temperatures are calculated from experimental values of the 
longitudinal and transverse speeds of sound [10], and for the crystals considered they lie in the range ~90–160 K. It is seen 
from Table 2 that the cited values of the characteristic temperatures are much higher than in the indicated range.

While from the physical point of view the Einstein model for a monoatomic substance seems unlikely to be true, for 
molecular crystals, each of whose molecule has its own set of frequencies, a part of the spectrum corresponding to optical 
frequencies can be described approximately by the Einstein model [12].

Einstein Approximation. Following the Einstein theory, we will consider that all of the vibrational modes have the 
same frequency, and in the vibrational part of the free Helmholtz energy we replace the real vibrational spectrum by one 
effi cient frequency. In this case, the expression for the free Helmholtz energy has the following form:
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where θE is the characteristic Einstein temperature. Differentiating twice expression (5) with respect to the temperature at a 
constant volume, we will obtain an expression for the heat capacity at a constant volume in the Einstein approximation:
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where xE = E

T
θ . It is known [12] that the values of the heat capacity at a constant volume determined by the Debye and 

Einstein theories coincide in the case where θE = 0.775 θD, i.e., the characteristic Einstein temperatures for the crystals of nitro 
compounds considered in the work must lie in the temperature range ~70–125 K. The values of the characteristic temperatures 
in the Einstein approximation determined from the experimental data for the capacities from Table1 are presented in Table 3. 
It is seen that the obtained values of the characteristic temperatures in the Einstein approximation do not get into the range 
indicated above.

The Kitaigorodskii Approximation. In the works of A. I. Kitaigorodskii [13] on the thermodynamics of molecular 
crystals an assumption was made that to describe the behavior of an organic molecular crystal it is worthwhile to split its 
thermodynamic functions into intermolecular and intramolecular ones. The intermolecular part of the spectrum consisted of 
six vibrations per molecule: three vibrations constitute the vibrations of the molecule′s center of gravity and three vibrations, 
the vibrations of the Eulerian angles. In this case, the expression for the free Helmholtz energy can be presented in the form 
of two components: intermolecular and intramolecular ones:

TABLE 2. Values of Characteristic Temperatures in the Debye Approximation

Parameters
Name of compound

Hexogen PETN TATB Trotyl
DC(x) 0.4466 0.4417 0.4250 0.4866

xD 4.40 4.41 4.55 4.11
θD 1311.2 1292.1 1333.1 1204.2
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where xi = ih
kT
ω  and ωi are the frequencies of the normal vibrations of atoms inside molecules cited for hexogen, trotyl, TATB 

(triaminotrinitrobenzene), and PETN (pentaerythritol tetranitrate) in works [3, 14], and UK and UM are the intermolecular and 
intramolecular energies of interaction.

Differentiating twice expression (6) with respect to the temperature at a constant volume, we will obtain an equation 
for the heat capacity at a constant volume in the form of two components:
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where CVD is the heat capacity component at a constant volume dependent on the vibrations of a molecule as a whole (three 
vibrations of the center of mass and three vibrations of the Eulerian angles) and determined in the Debye approximation, 
and CVM is the component of the heat capacity at a constant volume dependent on the intramolecular vibrations. Part of the 
heat capacity CVM is called intramolecular. The limiting values of the heat capacity components that correspond to high 
temperatures for all degrees of freedom are equal to 6R and (3N – 6)R, respectively. By virtue of the fact that molecular 
crystals have low Debye characteristic temperature (~90–160 K), it is already at room temperatures that part of the heat 
capacity determined by the vibrations of the molecule as a whole approaches its limiting value 6R.

The force constants for calculating the spectra of normal vibrations inside the molecule were determined with the aid 
of the quantum-mechanical methods PM-3 and DFT described in detail in [15, 16]. To ensure the validity of the calculated 
intramolecular vibrational spectra the conformations of molecules were determined from the data of x-ray structural analysis 
of the corresponding molecular crystals. The IR spectra for the hexogen, trotyl, TATB, and PETN agree well with the 
well-known experimental data [11]. While the errors of measurements of CP, α, and CS exerts a weak effect on the results 
contained in Tables 2 and 3, in the given case, in calculating CV, this fact is necessarily to be taken into account. The reason 
for this is that the value of the heat capacity CVD that describes the vibrations of the molecule as a whole constitutes only 
7–10% of the value of the total heat capacity CV and can be compared with the total error of measurements of CP, α, and 
CS. The well-known experimental data [10, 11] make it possible to determine the value of CV in a certain range presented in 
Table 4. The table also contains the values of CVM calculated by formula (7) and values of CVM determined by formula (8). 
By virtue of the fact that the pressure values 10–20 GPa characteristic for the initiation of detonation in the majority of solid 
explosives practically do not infl uence the intramolecular vibrational spectrum of nitro compound [17], to calculate the part 
of heat capacity associated with the intramolecular vibrations, it is possible to use the vibrational spectrum obtained for a 
single molecule. The values of the total dimensionless heat capacity at a constant volume CV/R, dimensionless heat capacities 
CVM/R, and CVD/R for hexogen, PETN, TATB, and trotyl determined by formulas (7) and (8) are presented in Table 4.

As follows from the results of calculations presented in Table 4, the value CVD/R = 6 gets into the range that 
determines the value of the heat capacity, which depends on the vibrations of the molecule as a whole. Consequently, the 
A. I. Kitaigorodskii approximation can be used in calculations of the heat capacity of molecular crystals, and, taking into 

TABLE 3. Values of Characteristic Temperatures in the Einstein Approximation

Parameters
Name of compound

Hexogen PETN TATB Trotyl

xE 3.24 3.25 3.34 3.05

θE 965.5 952.3 978.6 893.6



283

account the fact that the characteristic Debye temperature of molecular crystals are small, we may write an expression that 
determines the dependence of the heat capacity at constant volume on temperature in the form
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Using expression (9), we will calculate the dependence of the dimensionless heat capacity at constant volume CV/R 
on temperature. The results of calculations for hexogen, PETN, trotyl, tetrile, and TATB are presented in Table 5. The values 
of the relative heat capacity, i.e., the ratio of the heat capacity at a constant volume at the temperature T to the value of the heat 
capacity at the temperature 293 K, are cited in column 2 of the table. It is seen from the analysis of Table 5 that for hexogen, 

TABLE 4. Values of Dimensionless Heat Capacities at Constant Volume

Parameters
Name of compound

Hexogen PETN TATB Trotyl

CV/R 28.14–29.48 38.42 30.60−31.8 27.25−30.66

CVM/R 22.35 32.33 24.48 21.62

CVD/R 5.79–7.13 6.09 6.12 5.63–9.04

TABLE 5. Dependence of Dimensionless Heat Capacity at Constant Volume CV/R on Temperature

Temperature T, K
Hexogen PETN Trotyl Tetryl TATB

1 2 1 2 1 2 1 2 1 2

293 28.0336 1.0000 38.8859 1.0000 27.3300 1.0000 34.3759 1.0000 30.5916 1.0000

333 30.5213 1.0887 42.2531 1.0866 29.6198 1.0838 37.1202 1.0798 33.6959 1.0979

373 32.8353 1.1713 45.4409 1.1686 31.7955 1.1634 39.6961 1.1548 36.6647 1.1888

413 34.9681 1.2474 48.4126 1.2450 33.8453 1.2384 42.1007 1.2247 39.3797 1.2728

453 36.9221 1.3171 51.1520 1.3154 35.7628 1.3086 44.3348 1.2897 41.8432 1.3503

493 38.7066 1.3807 53.6590 1.3799 37.5466 1.3738 46.4021 1.3498 44.0675 1.4214

533 40.3348 1.4388 55.9438 1.4387 39.1994 1.4343 48.3099 1.4053 46.0704 1.4866

573 41.8208 1.4918 58.0222 1.4921 40.7271 1.4902 50.0671 1.4565 47.8727 1.5462

613 43.1791 1.5403 59.9130 1.5407 42.1368 1.5418 51.6840 1.5035 49.4959 1.6007

653 44.4227 1.5846 61.6350 1.5850 43.4370 1.5894 53.1715 1.5468 50.9606 1.6505

693 45.5638 1.6253 63.2063 1.6254 44.6362 1.6332 54.5402 1.5866 52.2858 1.6961

733 46.6129 1.6628 64.6432 1.6624 45.7425 1.6737 55.8001 1.6232 53.4886 1.7378

773 47.5792 1.6972 65.9606 1.6963 46.7639 1.7111 56.9610 1.6570 54.5839 1.7761

813 48.4709 1.7290 67.1713 1.7274 47.7078 1.7456 58.0315 1.6881 55.5847 1.8114

853 49.2953 1.7584 68.2867 1.7561 48.5808 1.7776 59.0197 1.7169 56.5021 1.8439

893 50.0584 1.7857 69.3164 1.7826 49.3891 1.8071 59.9329 1.7435 57.3457 1.8740

933 50.7659 1.8109 70.2691 1.8071 50.1383 1.8346 60.7778 1.7680 58.1236 1.9018

973 51.4226 1.8343 71.1521 1.8298 50.8335 1.8600 61.5604 1.7908 58.8430 1.9277

993 51.7 1.8454 71.5696 1.8405 51.1623 1.8720 61.9300 1.8016 59.0826 1.9313
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Fig. 1. Dimensionless heat capacity at onstant volume vs. temperature for hexogen (a), 
PETN (b), TATB (c), and trotyl (d): 1) data obtained by formula (9); 2) data obtained 
by formula (10).

Fig. 2. Relative heat capacity at constant volume vs. temperature for hexogen (a), PETN (b), 
TATB (c), and trotyl (d): 1) data obtained by formula (9); 2) data obtained by formula (10).
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PETN, trotyl, tetrile, and TATB the values of the relative heat capacity at constant volume differ little, i.e., in this case the 
values of the relative heat capacity at constant volume can be described by a universal curve.

Another approach to the determination of the dependence of the heat capacity at constant volume on temperature was 
suggested in the work of V. G. Shchetinin [9]. In this work, for a number of crystals of nitro compounds it was shown that the 
function CV(T) is well described by an empirical expression of the form
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where CVH = 3NR, 0
VC  is the value of the heat capacity at the initial temperature, and Tc is the parameter determined in [9] 

for a number of organic compounds.
The results of calculations of the dependence of the dimensionless heat capacity at constant volume CV(T )/R and 

of the relative heat capacity CV(T )/ 0
VC  on temperature obtained by formulas (9) and (10) are presented in Figs. 1 and 2, 

respectively. As follows from the analysis of the results presented in Figs. 1 and 2, the data obtained by formulas (9) and 
(10) differ insignifi cantly within the limits of the measurement errors. The good coincidence of the dependences allows us to 
suggest the presence of a certain universal curve that describes the dependence of the dimensionless heat capacity at constant 
volume on temperature. The unifi cation of the results of calculations performed by formulas (9) and (10) makes it possible 
to obtain an expression of the universal curve that describes the dependence of the dimensionless heat capacity at constant 
volume on temperature in the following form:
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TABLE 6. Relative Heat Capacities at Constant Volume vs. Temperature for Hexogen, PETN, TATB, and Trotyl

Temperature 
T, K

Hexogen PETN TATB Trotyl

1 2 3 1 2 3 1 2 3 1 2 3

293 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

333 1.0887 1.0799 1.0861 1.0866 1.0816 1.0733 1.0979 1.0873 1.0933 1.0838 1.0842 1.0857

373 1.1713 1.1546 1.1663 1.1686 1.1579 1.1529 1.1888 1.1690 1.1802 1.1634 1.1629 1.1683

413 1.2474 1.2246 1.2409 1.2450 1.2292 1.2270 1.2728 1.2454 1.2611 1.2384 1.2366 1.2454

453 1.3171 1.2900 1.3103 1.3154 1.2960 1.2960 1.3503 1.3168 1.3364 1.3086 1.3055 1.3172

493 1.3807 1.3512 1.3749 1.3799 1.3585 1.3694 1.4214 1.3837 1.4065 1.3738 1.3700 1.3842

533 1.4388 1.4084 1.4349 1.4387 1.4169 1.4203 1.4866 1.4463 1.4718 1.4343 1.4303 1.4466

573 1.4918 1.4620 1.4908 1.4921 1.4716 1.4762 1.5462 1.5048 1.5326 1.4902 1.4867 1.5048

613 1.5403 1.5121 1.5429 1.5407 1.5228 1.5282 1.6007 1.5595 1.5892 1.5418 1.5395 1.5590

653 1.5846 1.5590 1.5913 1.5850 1.5706 1.5767 1.6505 1.6107 1.6419 1.5894 1.5889 1.6096

693 1.6253 1.6028 1.6363 1.6254 1.6154 1.6218 1.6961 1.6586 1.6910 1.6332 1.6351 1.6567

733 1.6628 1.6439 1.6782 1.6624 1.6572 1.6639 1.7378 1.7035 1.7366 1.6737 1.6783 1.7007

773 1.6972 1.6822 1.7172 1.6963 1.6964 1.7031 1.7761 1.7454 1.7792 1.7111 1.7187 1.7416

813 1.7290 1.7181 1.7535 1.7274 1.7331 1.7396 1.8114 1.7846 1.8188 1.7456 1.7565 1.7798

853 1.7584 1.7517 1.7872 1.7561 1.7674 1.7736 1.8439 1.8213 1.8556 1.7776 1.7919 1.8154

893 1.7857 1.7831 1.8186 1.7826 1.7994 1.8053 1.8740 1.8556 1.8899 1.8071 1.8250 1.8486

933 1.8109 1.8125 1.8479 1.8071 1.8294 1.8348 1.9018 1.8877 1.9219 1.8346 1.8560 1.8795

973 1.8343 1.8400 1.8750 1.8298 1.8575 1.8623 1.9277 1.9178 1.9517 1.8600 1.8850 1.9084

993 1.8454 1.8531 1.8878 1.8405 1.8708 1.8754 1.9313 1.9321 1.9658 1.8720 1.8987 1.9221
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Table 6 presents the data of calculations of the relative heat capacities for hexogen, PETN, TATB, and trotyl performed by 
formula (9) (the results presented in column 1 of the table), formula (11) — the column numbered 2, and by formula (10) 
— the column numbered 3. As follows from the data of the table, the values of the relative heat capacity at constant volume 
calculated by formula (11) with the parameter T* equal to 600 K lie in the range limited from below and from above by the 
values of the relative heat capacity at constant volume calculated by formulas (9) and (10), respectively.

CONCLUSIONS

As clearly follows from Tables 2–6, the results obtained permit the following conclusions:

1. The considered Debye and Einstein approximations do not provide the possibility to obtain correct values of the 
characteristic temperatures for the molecular crystals of nitro compounds.

2. The A. I. Kitaigorodskii approximation can be used in calculations of the dependence of the heat capacity at 
constant volume on temperature.

3. For hexogen, PETN, trotyl, tetrile, and TATB the values of the relative heat capacity at constant volume can be 
described by universal curve (11) with one parameter T* equal to 600 K.

NOTATION

CP, CV, heat capacities at a constant pressure and volume, J/(kg·K); CS, adiabatic speed of sound, m/s; CS0, adiabatic 
speed of sound under normal conditions, m/s; CVD, component of heat capacity at a constant volume dependent on the 
vibrations of the molecule as a whole and determined in the Debye approximation, J/(kg·K); CVM, heat capacity component 
at a constant volume dependent on the intramolecular vibrations (intramolecular heat capacity at a constant volume), 
J/(kg·K); CVH = 3NR, high-temperature limit for the total heat capacity at a constant volume, J/(kg·K); 0

VC , the value of the 
heat capacity at a constant volume at the initial temperature, J/(kg·K); D(x), Debye function; DC(x), Debye heat capacity 
function; E0, energy of zero vibrations, J/kg; E, internal energy, J/kg; E(x), Einstein function; F(V, T), free Helmholtz energy, 
J/kg; h, Planck constant, J·s; k, Boltzmann constant, J/K; N, number of atoms in a molecule; P, pressure, Pa; R, universal 
gas constant divided by the molecular mass of the substance μ, J/(kg·K); S, entropy, J/(kg·K); T, body temperature, K; T0, 
temperature under normal conditions, K; Tc, T*, parameters for formulas (10) and (11), K; U, energy of interaction between 

atoms, J/kg; UK, UM, intermolecular and intramolecular energies of interaction, J/kg; V, specifi c volume, m3/kg; xD = D

T
θ ,

xE = E

T
θ , dimensionless characteristic Debye and Einstein temperatures, K; α, isobaric expansion coeffi cient, K–1; βT, βS, 

isothermal and adiabatic compressibilities, m·s2/kg; θD, θE, characteristic Debye and Einstein temperatures, K; μ, molecular 
mass of the substance, kg/kmole; ρ0, density of the substance under normal conditions, kg/m3; ωα, frequency of normal 
vibrations, m–1.
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