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Abstract. It is proposed the exact solution of the problem of a convergent shock wave and gas dynamic compression in a 
spherical vessel with an impermeable wall in Lagrangian coordinates. At the initial time the speed of cold ideal gas is 
equal to zero, and a negative velocity is set on boundary of the sphere. When  t > t0  the shock wave spreads from this 
point into the gas. The boundary of the sphere will move under the certain law correlated with the motion of the shock 
wave. The trajectories of the gas particles in Lagrangian coordinates are straight lines. The equations determining the 
structure of the gas flow between the shock front and gas border have been found as a function of time and Lagrangian 
coordinate. The dependence of the entropy on the velocity of the shock wave has been found too. For Lagrangian 
coordinates the problem is first solved. It is fundamentally different from previously known formulations of the problem 
of the self-convergence of the self-similar shock wave to the center of symmetry and its reflection from the center, which 
was built up for the infinite area in Euler coordinates. 

The border of the gas sphere with the mass 0M  and initial parameters for the gas 0 = const, 0U = 0, 0P = 0, 0E = 
0, where  – density, U  – velocity, P  – pressure, E  – specific internal energy, with jump starts moving with a 
negative velocity at the moment 0t t . When 0t t  the boundary trajectory changes in variables r, t , but it is a 
vertical line in variables M ,t . Generally speaking, all the trajectories of the particles are vertical lines in the 
variables M ,t . Along each of them retained the value of entropy, which appeared on the shock wave spreading 
from the border to the gas. Conservation laws on the shock wave at 0 0 00 0 0U , P , E  are of the form [1] 
 0 0w wD U D ,  (1) 
 0 0w wDU P ,  (2) 

 2
0

1 0
2w w w wD E U P U .  (3) 

The index “w” indicats values on the shock wave, D  - the shock wave velocity. Equations (1) - (3) closed by the 
equation of state 
 1P E . (4) 

International Conference on the Methods of Aerophysical Research (ICMAR 2016)
AIP Conf. Proc. 1770, 030069-1–030069-7; doi: 10.1063/1.4964011

Published by AIP Publishing. 978-0-7354-1428-0/$30.00

030069-1



In contrast to [2, 3], solution of the problem will be constructed in Lagrangian coordinates. The Lagrangian 
coordinate wM  of the shock wave in the case of a spherically symmetric flow associated by the equation with its 
coordinate Euler wr   

 3
0

4
3w wM r .  (5) 

The shock wave velocity W  in Lagrangian coordinates and velocity D  in Euler coordinates associated by the 
equation 
 2 3 1 3

03 4wW M D. (6) 
Expressing in (6) D  through W  and wM  and substituting in (1) - (3), we obtain the conditions on the shock 

wave, containing W  and wM  

 
2 3 2 3

1 3 1 3

0 0 0

3 31 1 4 0 4 0w w
w w w

w

M M
W U , U W P ,  (7) 

 
2 3

1 32

0

3
0 5 4 0w

w w w w

M
E , U W P U .  (8) 

From (4), (7), (8) ensue expression for w w,U  and wP   

 
1 3 2
0

0 1 3 2 3 2 3 4 3
0

21 2
1 1 4 3 1 4 3

w w w

w w

WW, U , P .
M M

 (9) 

Substituting w  and wP  in the equation of the state of the ideal gas in the form P F S , we obtain 

 
1 3 32

0
2 3 4 3

12
1 1 4 3

w

w

W
F

M
. (10) 

At the point 0 0 1 0 1 1 1 1w w w w wt ,M W W ,M M , P P , F F , , U U , then the expressions (9) and (10) 
take the form 

 
2 3 4 3 4 32 2

0 0 0
1 1 1

1 1 1
w w w

w w w

M M MW W WU U , P P , F F .
W M W M W M

 (11) 

We define the trajectory of the shock wave in the form 

 0
0

n

f
w

f

t t
M M

t t
, (12) 

where ft - focusing time. The shock wave velocity in Lagrangian coordinates depends on the time 

 
1

1
0

n

f

f

t t
W W

t t
, (13) 

where 0 0 0fW M n / t t . Excluding the functions of the time in (12) and (13), we obtain 

 
1

0 0

n n

wMW
W M

. (14) 

With the help of (14) from (10) the dependence wF  from wM  is obtained. Because both wF  and wM  along the 
trajectory of each particle is constant, the dependence of the entropy on the mass between the shock wave and the 
boundary of the gas has the form 

 
2 3 3

1
0

n n
MF F
M

. (15) 

Parameters of the adiabatic flow between the shock wave and boundary of the gas are determined by the 
equations of the trajectory, the conservation of mass and motion  
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2

20 4 0
M M

r Ur U ,
t t M

, (16) 

 24 0
M

FU r
t M

. (17) 

These equations contain three desired functions r, and U . The value F  is determined on the shock wave and 
depends only on M  (15). 

Let us pass in (16), (17) to new desired functions 
 3 2R r , C r U.  (18) 

After the pass to the functions R  and C  the equations (16) - (17) take the form 

 23 0 4 0
M M

R CC ,
t t M

, (19) 

 
4

2 134 2 0
M

FC R C R
t M

. (20) 

From (5), (9) and (14) follow the dependence of wR  and wC  on wM  

 
1

0 0
0 0

n n

w w
w w

M M
R R , C C

M M
. (21) 

The equations (19) and (20) are essential for finding R,C  and  in the area of the integration 0wM M M , 

0 ft t t . 
Let us proceed from the variables t , M  to variables t , t , M . With the help of the equations for the 

derivatives 

 
M tM tt t

,
t t t M M

 

we transform the equations (19)–(20) 

 3 0
Mt

R R C
t t

, (22) 

 24 0
M tt t

C
t t M

, (23) 

 
2 4

132 4 0
M t tt t t

C C C FR F .
t t R M M

 (24) 

We define the dependence of t , M  in the form 

 
0 0

n

f

f

t tM
M t t

. (25) 

It follows from (12) and (25) that on the shock wave at wM M will be 1. 
To separate the variables representing R,  and C  in the form of products of functions of the time and the 

function of  
 R CR t T t C t Z . (26) 

Since 1on the shock wave, the values 1 1 1w w wT , , Z  must be constant. The dependence wR , t  is 
obtained at 1 from (21) and (25) 

 0
0

n

f
w

f

t t
R R

t t
. (27) 
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To eliminate the arbitrary choice in the separation of functions R, , C  in (26) we require that  
T , , Z would be dimensionless. Then from (26) and (27) we go to 

 0
0

1
n

f
w R

f

t t
T , t R

t t
. (28) 

Similarly for  and C  we obtain the relations 

 
1

0 0
0

1 1
1

n

f
w w C

f

t t
, Z , , t C

t t
. (29) 

By substituting (26) - (29) (22) - (24), we obtain three equations for T ,  and Z  
 1T A , (30) 
 1 0B Z , (31) 
 1 2Z C C , (32) 

where the mark indicates differentiation of , 

 
2

6 34 3 1 4 30 0 0 0
1 1 1 0 0 0 0 0

0 0 0

3 4
4 n nZM C C

A T , B , C F T R C W
W R W

, 

2
0 0

2 1
0 0

1 2 33
3

n Z nZ M C
C C

TR W n n
. 

Using (9) and the relations following from (5), (6) and (18)  

 3 2 2 3
0 0 0 0 0 0 0 0 0 0 0 0

4 24
3 1

M r , W r D , C r D , R r  

we will simplify the relations for the coefficients of the equations (29) - (31). 

 

1 6 32 4 3
1 1 1

2

2 1

12 2
1 1 1

1 2 34
3 1 3

n nZA T , B , C T ,

n Z nZC C .
T n n

 (33) 

The equations (30), (31) are the system of linear inhomogeneous equations regarding to the T , , Z . The 
determinant of the system is the following 
 2

1 1B C .  
If 0 , the solution of the system (29) - (31) has the form 

 11 1 2 2A B C C
T , , Z . (34) 

Integrating the system of the equations (29) - (31) begins at the point 1 (on the shock wave), where 
11 1
1w w wT , Z ,  and, consequently, 

 
1 1 12

2

2 11 1
1 11

9 1 5 1 11
3 1 1

A , B , C ,

n
C , .

n

  

Calculations show that there exist interval values of n  such that the determinant does not vanish. At some value 
of n  the determinant vanishes. In this case, there is a solution, if 2C  is also vanishes. The values n  corresponding 
to the values  are given in the Table 1. In this table shows the values , in which simultaneously =0, 

C2 =0. The value n  is separates the solution of the problem into two types 
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TABLE 1. The values n  and  corresponding to the values .  
 

      n   
1.1 2.387895 7.915 
1.2 2.271414 5.695 
4/3 2.183052 4.555 
1.4 2.150000 4.285 
5/3 2.065128 3.505 

 
In case, when 0 n n  there is a collapse of the gas sphere - its volume approaches to zero. 
The trajectories of the shock wave and the border of the gas sphere, profiles of velocities, pressures and densities 

are given in Fig. 1 - 3. 

(a) (b) 

FIGURE 1. The trajectories of the shock wave and the border of the gas sphere for 5 3/  and 0 68n ,  (a). The trajectories 

of the shock waves for 5 3/  and different values 0 n n  in Lagrangian coordinates (b). 
 

(a) (b) 

FIGURE 2. Profiles of velocities (a), pressures (b) on the shock wave for different values 0 n n  and 5 3/  in 
Lagrangian coordinates. 
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(a) (b) 

 
(c) 

FIGURE 3. Profiles of velocities (a), pressures (b) and densities (c) for 5 3/  and 0 68n , for different time points. 
 
In the area n > n   the determinant vanishes for some value n, which is depends on n. But at this point C2 n  

does not vanish. Thus, the solution exists in the area 1 n. On the border of the gas sphere at M=M0 the value of 
n is reached at the moment 

 .
1

0
n

nffn tttt  (35) 

This is follows from the equation (25). From the point M0, tn comes out the line, on which = n. The equation of line 
is obtained from (25) 

 .
0

0

n

f

f
nn tt

tt
MM  (36) 

This line is focuses simultaneously with the shock wave, because Mn=0 at t=tf. In the area between (36) and the 
shock wave (12), for each n>n  the single solution is exists. 

The analytical solution of the problem of a converging shock wave in the collapsing gas has been constructed in 
Lagrangian coordinates with arbitrary parameter n , which determines the convergence of the shock wave. 
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