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EQUATION OF STATE OF DETONATION PRODUCTS OF 

COMPACT EXPLOSIVES 

V. F. Kuropatenko UDC 622:215 

The behavior of detonation products (DP) of compact explosives is described satisfac- 
torily in a number of cases by the equation of state [I-3] 

p = / ( p )  T + ~(9) ,  ( 1 )  

which takes account of the molecule interaction in a broad range of variation of the temper- 
ature T and density p. In a number of cases the functions f(p) and ~(p) are selected in 
simplest form. Thus a simple dependence of the pressure p on the density 

p = A  9" (2 )  

is proposed in [2] to describe the DP properties in the neighborhood of the Jouget point. 
The equation of state 

p = B o T +  Ao ~ ( 3 )  

w i t h  t h r e e  c o n s t a n t s  i s  e x a m i n e d  in  [ i ] .  The e q u a t i o n s  o f  s t a t e  (2 )  and (3 )  h a v e  a l i m i t e d  
r a n g e  o f  a p p l i c a b i l i t y .  I f  t h e  n u m e r i c a l  v a l u e s  o f  A, n ,  B a r e  c h o s e n  such  t h a t  t h e  e r r o r  
would be l e a s t  i n  t h e  n e i g h b o r h o o d  o f  t h e  J o u g e t  p o i n t ,  t h e n  i t  w i l l  grow n o t i c e a b l y  w i t h  
distance from it along the isentrope. The flinging properties of explosives are described 
better and the parameters of the normal detonation wave (DW) worse for another choice of 
constants. In order to increase the accuracy of describing DP behavior in the neighborhood 
of the Jouget point under isentropic expansion and moderate compressions, a number of equa- 
tions of state [4-6] of the type (i) was created with different functions f(p) and ~(p) con- 
taining around i0 constants. The rise in their accuracy is achieved by noticeable complica- 
tion. It is characteristic for the mentioned equations of state of the DP that the numeri- 
cal values of the major part of the parameters therein are determined individually for each 
explosive. 

Let us consider one of the methods for finding the functions y(p) and ~(p) for (i) 

p = (?(p) - -  t ) oE  + ~(p) .  ( 4 )  

A physical experiment permits determination of the dependence of the velocity D of the normal 
detonation wave, the mass flow rate u behind the wave front, and the calorific value Q of 
the explosive on the initial density P0 ahead of the detonation wave front. We will use 
these dependences to set up the form of the functions y(p) and ~(p) and to determine the nu- 
merical values of the parameters in them. 

The conservation laws on a strong discontinuity with instantaneous liberation of in- 
ternal energy Q have the form 
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p ( D - u ) = p o ( D - - u o ) ,  p . p o = p o ( D - - u o ) ( u - - u o ) ,  

E - E o  = 0 , 5  ( u  - uo)  2 + Po (u - uo)/,% (D - uo) + Q, 
lop\  D = u + e ,  &=I-7-f j  

(5) 

For a given equation of state (4) the system (4) and (5) determines the line of the Jouget 
points on which all the thermodynamic quantities and velocities depend on 00. Let us intro- 
duce the concept of a crystalline or greatest possible explosive density P0K under normal 
conditions and a normal detonation wave velocity D K in an explosive with this density. Let 
us use p0 K and D K to go over to dimensionless variables 

A = Po/P,~. 6 = P/Po~. W =  D/D~. 
, o ( 6 )  

3I = u,,'D~, Z = c/DK, H = P, po.D~, 

* = ~/vo,D~, J = E/D~,  K = Q/D~. 

For simplicity we shall consider u 0 = 0, P0 = 0, E0 = 0 in (5). After having gone over to 
the dimensionless variables (6), the equations (5) become 

6 = W A / ( W - - M ) ,  II = WJ[A, 
~r~ (7) 

]=o .5~]z~+~ ,  w = ~ , + z ,  z=(~- ) s .  

Let us write (4) in dimensionless variables 

I I  = (~t -- l ) S ] +  O. (8)  

The system of six equations (7) and (8) contains nine functions of A: E, 5, J, W, M, K, Z, 
y, 0. The system becomes definite if any three of the nine mentioned functions of A are 
given, i.e., are defined without utilization of (7) and (8). 

Let us introduce the index of adiabaticity N 

(01nP/ (9) 
N = ~a-i~ p/s" 

Going over to dimensionless quantities and using (5) and (7), we obtain 

N = Z26/II .  ( i 0 ) 

Let us eliminate Z and M in (7) and (i0) 

6 = A (N  + l ) / N .  

w 2 
J= +K, 

2 (N + t) 2 

1-I = W2A,'(N + 1), 

s = \:Y+ I/ 

Let us find an exprssion for the derivative (8E/36)S. 
equation 

(ii) 

To do this, we use the thermodynamic 

It follows from the main thermodynamics equations that along the isentrope 

b.I\ = N 

-d~ ) s 6--T.,_ . 

Let us substitute expressions for the derivatives 

(12) 

(13) 

Or[) d(D d? ~- = - ~ - §  6,,' 7E' 

(an)~ = ( y _  ~)6 

into (12) and let us eliminate (8J/86)S by using (13) 

d~ dy { y - - t ) r i  ( WA" /~ 
d-T+ (Y--  t) J + 6 J ~  + 6 \,v-717 

Using (8) we eliminate J in (16). We consequently obtain 

= 0 .  

(14) 

(t5) 

(16)  
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d~ (I3 , ( ] ) - -N) I1 ( I I - -  (D) d? = 0. 
d6 b (5 + 'Z--"""""'T d6 ( t 7 )  

All the quantities on the line of Jouget points depend on A. 
with respect to 6 by differentiation with respect to 5 in (17). 
ferentiate 6 with respect to A: 

d8 N ~ t h dN 
dA N N 2 dA " 

Multiplying (17) by dS/dS, we obtain 

Let us replace differentiation 
To do this, we first dif- 

(18) 

dA 7 6 A, r .,V :z dA ~ ? - - t  dA 

U s i n g  ( 8 )  a n d  ( 1 1 )  we e x p r e s s  r i n  t e r m s  o f  E, 6 ,  N and  K: 

q) = H - -  ( ? - -  t) A (W 2 = 2K( :V+ l) "~) ( 2 0 )  
2N (:u + l) 

U s i n g  ( 1 8 )  we e l i m i n a t e  r i n  ( 1 7 ) .  To e l i m i n a t e  d e / d 5  a l s o ,  we p r o c e e d  a s  f o l l o w s .  We s u b -  
s t i t u t e  t h e  e x p r e s s i o n  f o r  1I f r o m  ( 1 1 )  i n t o  ( 2 0 )  a n d  d i f f e r e n t i a t e  t h e  e x p r e s s i o n  o b t a i n e d  

(? --  t) (W" ~ 2K (N z_ t! 2) __ W A ( 2 N - - ? - - I )  dW__ 
2N ( N - -  1) ~ N ( N t  t) dA 

(W2A(?--I--.V~~I7 - -  ( ? - - t ) K A ' 2 " V •  d N N  ~ dA 

d(I) W 2 
dh N=-  I 

( ? - - ~ ) ( N  ' l ) h v -  dK 

5 ( W 2 - - 2 K t N : I f  ') __dr (21) 
2N (N -:- t ~ dA" 

with respect to 5 

N dA 

Substituting (20) and (21) into (19), we obtain the equation of the Jouget line 

dW . , dK 
W A ( 2 N - - ? +  1 )7  s - - - ( ~  - -  t ) ( N  + I)~-A~-~ + N W 2 ( ? - - N ) =  0. ( 2 2 )  

that contains three f~nctions of 5 (W(5), K(A), N(&)) that can be measured experimentally. 
After having determined the functions mentioned, the expression (22) permits finding the 
dependence 

dW 
2ANW ~ -  - -  NW z (N --  1) 

?----- i -- dW dK (23) 
Wa -~f + (N . I) ~" a -s -- NW ~ 

It follows from (23) that there are certain connections between W, N and K. Since 7 -> 1 then 
the numerator and denominator in (23) should vanish simultaneously. For many explosives 
these W(5) are described with satisfactory accuracy by the dependence 

W = A  ~, (24) 

where a = 0.7. Substituting (24) into (23) and introducing the notation m = 4 I- 2adK/dS, we ob- 
tain 

N (N -- i -- 200 ( 25 ) ?=i+ 
N _ a _ ( o ( N  + t)2 �9 

Let us introduce another set of additional constraints on the nature of the functions 
N(5) and m(5). Let us demand that N + ~ + 70 = const as 5 + O. For small p we consider the 
equation of state (4) for 7 = ~0- We represent p and E in the form of the hot and cold com- 
ponents 

p = p T ( p ,  T ) + p . ~ ( p ) ,  E = E ~ ( o ,  T ) + E ~ ( p ) .  (26) 

Let us consider that 

Using (26) and (27) then (4) 

where 

p ~ - - - - ( 7 0 - t ) p E ~ ,  E ~ = c r T ,  c v = c o n s t .  ( 2 7 )  

is 

p V = ( ~ , o  l ) c , , r + / ( V ) ,  ( 2 8 )  

/ ( V ) = V q o ( V ) + ( ? o - - i ) E ~ ( V ) ;  V----'l_/p. 
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Let us consider the DP to be a mixture of gases under conditions of mechanical and thermal 
equilibrium and subject to the equations of state 

PY~ = (]o~- t ) cy s t  + / ~ ( ~ ) .  (29)  

Using the additivity of V and E in the mixture 

I" = ~ zJ - i .  E = ~ • (30)  

( ~ i  i s  t h e  mass c o n c e n t r a t i o n  o f  t h e  i - t h  c o m p o n e n t ) ,  we w r i t e  ( 2 7 ) - ( 2 9 )  in  t h e  fo rm 

(?o - -  !) cvr +/ (Y )  = x~ [(yo~ _ ~)cv~• + • (vo]~ ( ~ i )  

cvT + E~ (V) = ~ [• -- • (Vi)]. (32)  
i 

For T = 0 a relation follows from (31) and (32) between the cold components of the mixture 
equation of state and the components 

/ r  = ~.• (Y+ Ex(v) = ~ • (33) 
{ { 

It follows from (30)-(33) that for any value of T there should be 

( % - - ] ) c v = ~ ( % i - -  !)• (34)  
i 

CV = ~ • (35) 

Therefore, to determine the X0 of the mixture it is necessary to know the ~i, 7i and cvi of 
each component. Such data are presented in [i, 7, 8] for a number of explosives. According 
to different theories, the mass concentrations of the DP components are distinct. Conse- 
quently, we limit ourselves to consideration of the average concentrations. In such an ap- 
proach 

"o=t+(~.~((Y'i--l)X~Cv~' ~-a)/(~ • 0.  (36) 

w / 
~a 
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TABLE i 

h 
00~, g/cm Dg,km/se~ Explosive Pom g/cm Dg, km/sec Explosive 

Trotyl i,663 7,15 TEN i,770 8,35 
Tetryl i,730 7,74 Hexogen i,820 8,80 

For  t r o t y l  70 = 1 . 3 7 3 ,  which  i s  c l o s e  t o  t h e  v a l u e  7o = 1.3"78 f o r  hexogene .  S i n c e  t h i s  d i f -  
f e r e n c e  l i e s  w i t h i n  t h e  l i m i t s  o f  e r r o r s  a l l o w e d  f o r  a v e r a g i n g  o f  ~ i ,  t h e n  we t a k e  t h e  s i n g l e  
v a l u e  7o = 1 .375  f o r  t r o t y l  and hexogene  t h a t  i s  c l o s e  t o  70 = 1 .33 t a k e n  in  [4] f o r  a num- 
be r  o f  m i s c i b l e  e x p l o s i v e s .  

L i t t l e  d a t a  on t h e  c a l o r i f i c  v a l u e s  o f  e x p l o s i v e s  a r e  c o n t a i n e d  in  t h e  l i t e r a t u r e .  Ex- 
a c t l y  as  r e s u l t s  on N(A),  t h e y  have a n o t i c e a b l e  s p r e a d .  Le t  us use  d a t a  f rom [1 ,  3 -9 ]  by 
r e p r e s e n t i n g  them in  d i m e n s i o n l e s s  form and a p p r o x i m a t i n g  them by s i n g l e  d i m e n s i o n l e s s  de -  
p e n d e n c e s  on A f o r  d i f f e r e n t  e x p l o s i v e s .  I t  f o l l o w s  f rom (22)  and (24)  t h a t  as  p + 0, A 
0 and N + 7 ~ ~0 t h e r e  s h o u l d  be 

(37)  

Furthermore, from the condition of finiteness of y, i.e., from the condition of simultaneous 
disappearance of the numerator and denominator in (25), there follows that there should be 

i 
for Iu = i + 2~. (38) O= O, = 4(i+a) 

Moreover, we demand that w still satisfy two conditions for 5 = i: 

1 

~ 52~-IodA = o = 0, K~ ~ 
( 39 ) 

0 

where KKis the value of the dimensionless caloric value of the explosive for 5 = i. The 
conditions (39) are suggested after an analysis of the experimental data on caloric values 
of explosives. Conditions (37)-(39) and equaZion (22) substantially constrain the class of 
functions that can be used to approximate experimental data on K(5) and N(5). 

Because of its awkwardness we omit the procedure for the numerical solution of (22) with 
conservation of the constraints on w(A) and 7(5) listed above and with simultaneous optimi- 
zation of the approximations of the experimental data on the behavior of N(5) and K(A). We 
approximate the tabulated dependences obtained, in turn, by the functions 

{~ for X > ~  
(40) 

?= ?o + ( ? - - -  ?o) x ( 3 - - 3 x + x  2) for x < ~ t ,  

(p=lpo~D~A(x--1) m f o r  Z > i ,  (41)  

to for x ~ t ,  

where x = 6/6,; A = 0.0139; 70 = 1.375; y~ = 1.667; 6, = 0.35; m = 2.284. 

For a final construction of the DP equation of state for a specific compact explosive 
the parameters P0K and D K must be determined (they are presented in the table for certain 
explosives). For miscible explosives the values of PaK and DK are expressed by using the 
simple equations 

A comparison of the functions W(A) (a), N(A) (b) and K(A) (c) (lines) with experimental 
data from [i, 3-9] is presented in the figure: i) trotyl; 2) hexogen; 3) TEN; 4) tetryl. 

i. 

2. 
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