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Summary. Certain manipulation with the mass, momentum and energy conserva-
tion laws, written in the form of partial differential equations for an ideal non-heat-
conducting medium, give a corollary saying about entropy conservation along the
particle trajectory.

Conservation laws on the surface of a strong shock are algebraic equations show-
ing that entropy grows across the shock wave. This is the fundamental difference
between a shock wave and a continuous solution.

We will discuss only the shock wave methods that treat the strong discontinuity
as a layer of a finite width (the shock is smeared within an interval of a finite
length called distraction) comparable with the size of the mesh cell. Since states
behind and before the shock are related, then there must exist a mechanism that
ensures the growth of entropy in the shock distraction region. Only four principally
different mechanisms of energy dissipation in the distraction region are known [1]–
[4]. Consider four shock wave methods corresponding to these four mechanisms.
Many difference schemes can be used to implement them. I suggest that we look
only at those that were proposed by the authors of these four methods [1]–[4]. B.L.
Rozhdestvensky and N.N. Yanenko [5] were first to try to compare these methods,
focusing on approximations and stability.

In this presentation I will focus on energy dissipation, shock distraction and
monotonicity.

1 Neumann – Richtmyer method

The basic idea of the method is that energy dissipation and strong shock
distraction occupying several mesh cells are provided by adding an artificial
viscosity term to the differential equations of motion and energy [1].

Ref. [1] proposes the artificial viscosity term in the form

q = −C2Δx2
0

V

∂U

∂x0

∣∣∣∣ ∂U∂x0

∣∣∣∣ (1)

and offers a difference scheme then slightly modified in [6]. Difference schemes
with the artificial viscosity term may differ, as well as expressions for q [7,



78 V.F. Kuropatenko

8]. The difference schemes may be either explicit or implicit. But given the
presence of the artificial viscosity term, all such schemes are implementations
of the Neumann-Richtmyer method.

In the difference scheme proposed in [1], thermodynamic quantities are
defined at the centers of mesh intervals for m, and velocities and coordinates
are defined in mesh nodes. Equations in [6] are written as:

Un+1
i − Un

i

Δt
+

Pn
i+0,5 + qn

i+0,5 − Pn
i−0,5 − qn

i−0,5

h
= 0,

xn+1
i = xn

i + τUn+1
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i+0,5 =
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h
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V n
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)2
, for Un+1

i+1 − Un+1
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0, for Un+1
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i � 0
,

En+1
i+0,5 − En

i+0,5 +

(
Pn+1

i+0,5 + Pn
i+0,5

2
+ qn+1

i+0,5

)(
V n+1

i+0,5 − V n
i+0,5

)
= 0, (2)

Pn+1
i+0,5 = P

(
V n+1

i+0,5, E
n+1
i+0,5

)
, (3)

Equations (2) and (3) form a system of non-linear equations for Pn+1 and
En+1.

The method is conditionally stable. The ratio between time and space
steps æ = aτ/h depends on an empirical constant, k, and according to [6],
the actual stability condition is

æ � 0, 25.

Ref. [1] proposes a method of shock distraction analysis. For this purpose
they add the artificial viscosity term, q, in form (1) and go to a self-similar
variable

ξ = m−Wt.

This yields
WV ′ + U ′ = 0, (4)

WU ′ − (P + q)′ = 0, (5)

E′ + (P + q)V ′ = 0, (6)

where priming means differentiation with respect to ξ.
For the ideal gas

PV = (γ − 1)E (7)

and q taken in the following form:

q =
k2h2W 2

V
(V ′)2 , (8)
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equations (4)-(8) reduce to the single equation for V

2k2h2

(
dV

dξ

)2

+ (γ + 1) (V − V0)
2 + 2V0 (V − V0) = 0. (9)

Its solution is

ξ = ±kh
√

2
γ + 1

arcsin
(
γ − (γ + 1)

V

V0

)
.

For V = V0, ξ = ξ0 =
3khπ

2

√
2

γ + 1
and for V = V1, respectively,

ξ = ξ1 = −kh
√

2
γ + 1

arcsin
(
γ − (γ + 1)

V1

V0

)
.

The maximum compression V1 =
γ − 1
γ + 1

V0 is achieved across the infinite

shock with P0 = 0. In this case ξ1 = −khπ

2

√
2

γ + 1
. So, the width of the shock

layer, Δξ, and the strong shock distraction, D, in the Neumann-Richtmyer
method are:

Δξ = ξ0 − ξ1 = 2khπ
√

2
γ + 1

, DNR =
Δξ

h
= 2kπ

√
2

γ + 1
.

The effective distraction, De
NR, is determined by finding points where the

straight line V (ξ) with the maximum slope

V ′
m (ξ) =

V0

kh
√

2 (γ + 1)

intersects with V0 and V1

Δξ =
V0 − V1

V ′
M

. (10)

Substituting the expression for V ′
M and the minimum specific volume

V1 =
γ − 1
γ + 1

V0,

and dividing by h yield

De
NR = 2k

√
2

γ + 1
.
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2 Lax method

The basic idea of this method [2] is that energy dissipation is provided by
the principal terms of approximation errors. Later this method was called the
approximation viscosity method.

Difference equations are obtained by integrating the conservation laws over
the mesh cell and applying the mean-value theorem:

V n+1
i+0,5 − V n

i+0,5

τ
− U∗

i+1 − U∗
i

h
= 0, (11)

Un+1
i+0,5 − Un

i+0,5

τ
+

P ∗
i+1 − P ∗

i

h
= 0, (12)

εn+1
i+0,5 − εn

i+0,5

τ
+

(PU)∗i+1 − (PU)∗i
h

= 0, (13)

En+1
i+0,5 = εn+1

i+0,5 − 0, 5
(
Un+1

i+0,5

)2
, (14)

where the values of sought functions V n
i+0,5, P

n
i+0,5, U

n
i+0,5, E

n
i+0,5, and εn

i+0,5

are defined at the centers of mesh intervals for m at times tn, and auxiliary
quantities P ∗

i , U∗
i and (PU)∗i are defined at the centers of the time steps, τ ,

at the faces of the mesh cells with coordinates mi.
Equations (11)-(14) are general until equations for U∗

i , P ∗
i and (PU)∗i are

specified. Ref. [2] proposes a difference scheme that defines auxiliary quan-
tities U∗ and P ∗ across shocks and continuous solutions with the following
equations:

U∗
i =

1
2
(
Un

i+0,5 + Un
i−0,5

)
+

h

2τ
(
V n

i+0,5 − V n
i−0,5

)
, (15)

P ∗
i =

1
2
(
Pn

i+0,5 + Pn
i−0,5

)
− h

2τ
(
Un

i+0,5 − Un
i−0,5

)
, (16)

(PU)∗i =
1
2

(
(PU)n

i+0,5 + (PU)n
i−0,5

)
− h

2τ
(
εn

i+0,5 − εn
i−0,5

)
. (17)

Difference equations (11)-(13) and equations (15)-(17) for the auxiliary quan-
tities approximate the differential conservation laws with approximation errors

ω1 = −1
2
∂2V

∂t2
τ +

1
2
∂2V

∂m2

h2

τ
+ O

(
τ2, h2

)
, (18)

ω2 = −1
2
∂2U

∂t2
τ +

1
2
∂2U

∂m2

h2

τ
+ O

(
τ2, h2

)
, (19)

ω3 = −1
2
∂2ε

∂t2
τ +

1
2

∂2ε

∂m2

h2

τ
+ O

(
τ2, h2

)
. (20)

When h → 0 and τ = const, the associated terms in (18)-(20) tend to
zero. However, it goes worse with τ . When τ →0, the terms proportional to
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h2

τ
in (18)-(20) tend to zero if only lim

τ→0
h→0

h2

τ
= 0. If not, equations (11)-(13) do

not converge to the initial differential equations because the reduction of τ at
constant h increases the error.

According to [9], the equation of entropy production for difference schemes
with independent ω1, ω2, and ω3 is

T
∂S

∂t
= ω3 − Uω2 + Pω1. (21)

Substitute Eqs. (18)-(20) into Eq. (21) and using differential equations
replace the second time derivatives in Eq. (20) by m-derivatives. Also assume

that
∂S

∂m
≈ 0 and then the entropy production equation takes the form:

T

(
∂S

∂t

)
=

h

2a

(
1− æ2

)
æ

(
a2

(
∂V

∂t

)2

+
(
∂U

∂t

)2
)

+ ...

For æ =
τa

h
→ 0, the rate of entropy production approaches infinity. So, the

difference scheme of Lax is extremely dissipative, according to [8].
Consider the distraction of a stationary discontinuity in the Lax method.

For this end write difference equations (11)-(13) in the differential form with
approximation errors (18)-(20) and go to the variable ξ = m−Wt. We obtain

WV ′ + U ′ +
h2

2τ
(
1− æ2

)
V ′′ + O

(
τ2, h2

)
= 0,

WU ′ − P ′ +
h2

2τ
(
1− æ2

)
U ′′ + O

(
τ2, h2

)
= 0,

Wε′ − (PU)′ +
h2

2τ
(
1− æ2

)
ε′′ + O

(
τ2, h2

)
= 0.

Integrate these equations with respect to ξ. Find constants of integration for
ξ = +∞, where U = U0, V = V0, P = P0, E = E0, ε = 1

2U
2
0 + E0, V ′ = 0,

U ′ = 0, P ′ = 0, ε′ = 0. This yields

WV + U + AV ′ −WV0 − U0 + O
(
τ2, h2

)
= 0,

WU −WU0 − P + P0 + AU ′ + O
(
τ2, h2

)
= 0,

Wε−Wε0 − PU + Aε′ + P0U0 + O
(
τ2, h2

)
= 0, (22)

where A =
h2

2τ
(
1− æ2

)
. Substitute the Clapeyron equation into (22). Then

express all quantities in terms of V and derivatives in terms of V ′. We obtain
an ordinary differential equation for the profile V (ξ)

4AV

W (γ + 1)
dV

dξ
− (V0 − V ) (V − V1)

V
= O

(
τ2, h2

)
, (23)
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where V1 = V0

(
γ − 1
γ + 1

+
2

γ + 1

( a0

W

)2
)

. Omitting the second order infinites-

imals gives the following solution:

ξ =
2h2
(
1− æ2

)
τW (γ + 1) (V0 − V1)

(V1 ln (V − V1)− V0 ln (V0 − V )) . (24)

It follows from (24) that ξ = ξ0 = +∞ for V = V0 and ξ = ξ1 = −∞ for
V = V1. So, the strong shock distraction in the Lax method is infinite:

DL =∞.

To determine the effective distraction, differentiate (23), and find VM and
the maximum value V ′

M for V ′′ = 0

VM =
√

V0V , V ′
M =

(γ + 1) æ
2h (1− æ2)

(√
V0 −

√
V1

)2

. (25)

Using (23) and (10) yields

De
L =

2
(
1− æ2

)
(γ + 1) æ

(√
V0 +

√
V1√

V0 −
√
V1

)
. (26)

It is seen from (25) that De
L → 0 for æ → 1 and De

L → ∞ for æ → 0 or
V1 → V0.

Finally, check monotonicity of the Lax scheme. Go from P and U to in-
variants:

α = P + aU, β = P − aU.

Express P and U in terms of α and β:

P = 0, 5(α + β), U = 0, 5 (α− β) /a. (27)

For a matter with EOS
P = a2 (V0 − V ) , (28)

replace V by P in Eq. (11). We obtain

Pn+1
i+0.5 =

1
2
(
Pn

i+1.5 + Pn
i−0.5

)
− 1

2
τa2

h

(
Un

i+1.5 − Un
i−0.5

)
. (29)

Substituting (27) in (29) and (12) yields

αn+1
i+0.5 + βn+1

i+0.5 = 0, 5 · αn
i−0.5 (1 + æ)+

+0, 5 · αn
i+1.5 (1− æ) + 0, 5 · βn

i−0.5 (1− æ) + 0, 5 · βn
i+1.5 (1 + æ) , (30)

αn+1
i+0.5 − βn+1

i+0.5 = 0, 5 · αn
i−0.5 (1 + æ)+

+0, 5 · αn
i+1.5 (1− æ)− 0, 5 · βn

i−0.5 (1− æ)− 0, 5 · βn
i+1.5 (1 + æ) . (31)
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Sum (2) and (2), and then subtract (2) from (2)

αn+1
i+0.5 = 0, 5 (1− æ)αn

i+1.5 + 0, 5 (1 + æ)αn
i−0.5,

βn+1
i+0.5 = 0, 5 (1 + æ)βn

i+1.5 + 0, 5 (1− æ)βn
i−0.5.

⎫⎬⎭ (32)

It follows from (32) that for 0� æ �1, all coefficients of the invariants in the
right-hand sides are nonnegative and hence the difference scheme by Lax is
monotonic by the Godunov theorem.

3 Godunov method

In this method all quantities that characterize the response of media to loads
are defined at the centers of mesh intervals for m. Coordinates xi are defined
in mesh nodes. The difference equations are written in forms (11)-(13). Auxil-
iary quantities P ∗

i , U∗
i are defined as follows. All tabular functions at time tn

are assumed piecewise constant. Therefore, arbitrary discontinuities appear
in nodes. They split at t > tn. Pressures and velocities across the contact dis-
continuity are taken to be auxiliary quantities. If an arbitrary discontinuity is
such as a shock wave propagates to the right of xi and a rarefaction wave does
to the left, then equations for the quantities across the contact discontinuity
are

P ∗
i + an

i−0.5U
∗
i = Pn

i−0.5 + an
i−0.5U

n
i−0.5,

P ∗
i −Wi+0.5U

∗
i = Pn

i+0.5 −Wi+0.5U
n
i+0.5.

Generally Wi+0.5 depends on P ∗
i and U∗

i because the problem of discontinuity
splitting is non-linear. However, for a weak shock with Wi+0.5 = a + O(h),
ai−0.5 = a + O(h), equations for P ∗

i , U∗
i take the form

P ∗
i = 0, 5

(
Pn

i+0.5 + Pn
i−0.5

)
− 0, 5a

(
Un

i+0.5 − Un
i−0.5

)
, (33)

U∗
i = 0, 5

(
Un

i+0.5 + Un
i−0.5

)
− 0, 5

(
Pn

i+0.5 − Pn
i−0.5

)/
a. (34)

Write difference equations (11)-(13), (33) and (34) in the differential form.
The approximation errors ω1, ω2, and ω3 are:

ω1 = −τ

2
∂2V

∂t2
− h

2a
∂2P

∂m2
+ O

(
τ2, h2

)
,

ω2 = −τ

2
∂2U

∂t2
− ah

2
∂2U

∂m2
+ O

(
τ2, h2

)
,

ω3 = −τ

2
∂2ε

∂t2
− ah

2
U

∂2U

∂m2
+

ah

2

(
∂U

∂m

)2

+
h

2a

(
∂P

∂m

)2

+
h

2a
P

∂2P

∂m2
+O

(
τ2, h2

)
.

Since ω1, ω2, and ω3 are independent, then, by [9], the right-hand side of the
entropy equation is in form (21). Substitute ω1, ω2, and ω3 in (21). Then using
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differential conservation laws and their derivatives, replace time derivatives by
m-derivatives. This gives the following equation of entropy production:

T
∂S

∂t
=

h

2W
(1− æ)

((
∂P

∂m

)2

+ W 2

(
∂U

∂m

)2
)

+ O
(
τ2, h2

)
. (35)

It follows from (35) that for æ =
τa

h
< 1, this difference scheme, being

an acoustic approximation to the Godunov scheme, is extremely dissipative.
Since the principal term in the right-hand side of Eq. (35) is nonnegative,
entropy grows across both shock and rarefaction waves. The rate of entropy
production is limited and achieves maximum at æ = 0:

T
∂S

∂t
<

h

2W

((
∂P

∂m

)2

+ W 2

(
∂U

∂m

)2
)

.

Analyze shock distraction. For this end go to the self-similar variable ξ =
m−Wt and write the difference equations in the differential form:

WV ′ + U ′ − τW 2

2
V ′′ − h

2W
P ′′ + O

(
τ2, h2

)
= 0,

WU ′ − P ′ − τW 2

2
U ′′ +

hW

2
U ′′ + O

(
τ2, h2

)
= 0,

Wε′ − (PU)′ − τW 2

2
ε′′ +

hW

2
(UU ′)′ +

h

2W
(PP ′)′ + O

(
τ2, h2

)
= 0.

Integrating with respect to ξ and eliminating P , U , ε, P ′, U ′, ε′ gives the
following equation for V (ξ) for the ideal gas:

2h (1− æ)
(γ + 1)

· dV
dξ

+
(V − V0) (V − V1)

V
+ O

(
τ2, h2

)
= 0.

Its solution is

ξ =
2h (1− æ)

(γ + 1) (V0 − V1)
(V1 ln (V − V1)− V0 ln (V0 − V )) .

From this equation:
ξ = ξ0 = +∞ for V = V0,

ξ = ξ1 = −∞ for V = V1,

So, in the Godunov method, the shock distraction for æ < 1 is infinite:

DG =∞,

and for æ = 1, DG=0.
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The effective distraction is obtained in the same manner as in the Lax
method:

De
G =

2
(γ + 1)

(1− æ)
(√

V0 +
√
V1√

V0 −
√
V1

)
.

To check the Godunov scheme for monotonicity, go to the invariants. Ex-
press P and U in terms of α and β, and for equation of state (28), replace V
by P in Eq. (11). For a = W , we obtain

αn+1
i+0.5+βn+1

i+0.5 = αn
i+0.5+βn

i+0.5+æ
(
βn

i+1.5 − αn
i+0.5 − βn

i+0.5 + αn
i−0.5

)
, (36)

αn+1
i+0.5 − βn+1

i+0.5 = αn
i+0.5 − βn

i+0.5 + æ
(
−βn

i+1.5 − αn
i+0.5 + βn

i+0.5 + αn
i−0.5

)
.

(37)
Summing (36) and (37), and subtracting (37) from (36) give equations for α
and β:

αn+1
i+0.5 = αn

i+0.5(1− æ) + αn
i−0.5æ,

βn+1
i+0.5 = βn

i+0.5(1− æ) + βn
i−0.5æ.

For 0 � æ � 1, all coefficients of α and β are nonnegative and by the Go-
dunov theorem, the difference scheme, being an acoustic approximation of the
Godunov scheme, is monotonic.

4 Kuropatenko method [4]

The basic idea of this method is as follows. All mesh intervals (basic and
auxiliary) are referred to one of two types depending on solution: compression
or rarefaction. The former is treated as shock compression defined by the local
(only within the current interval) shock wave. States before and behind the
shock wave relate as conservation laws:

P1 − P0 −W (U1 − U0) = 0, (38)

U1 − U0 + W (V1 − V0) = 0, (39)

P1U1 − P0U0 −W (E1 − E0)−
W

2
(U2

1 − U2
0 ) = 0. (40)

The state before the shock (P0, V0, E0, U0) is the solution in the mesh
interval. One of the quantities, either on the boundary or in the neighbor
interval, is taken as the quantity behind the shock. Other quantities behind
the shock are determined from Eqs. (38)-(40) and the equation of state. They
are taken as auxiliary quantities. For example, if define U1 [4], then P1, V1,
E1, and W are sought from Eqs. (38)-(40), or if define P1 [10,11,12], then V1,
E1, U1, and W are sought.

The method can be implemented on different meshes [4], [9]–[14]. Discuss
two of them.
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4.1 Non-divergent scheme

Meshes proposed in [4] for velocity and thermodynamic quantities differ.
Quantities P , V , and E are defined at the centers of mass intervals, and
velocities are defined in nodes tn, mi.

For a compression wave, the difference equations take the form:

Un+1
i − Un

i

τ
+

P
n

i+0.5 − P
n

i−0.5

h
= 0, (41)

xn+1
i = xn

i + τUn+1
i , (42)

V n+1
i+0,5 =

xn+1
i+1 − xn+1

i

h
, h =

xn
i+1 − xn

i

V n
i+0,5

(43)

En+1
i+0.5 − En

i+0.5 + 0, 5
(
P

n+1

i+0.5 + P
n

i+0.5

) (
V n+1

i+0.5 − V n
i+0.5

)
= 0. (44)

The dynamic pressure P is a solution of these equations across the strong
shock. Before the shock, we take quantities in the mesh interval at time tn

V0 = V n
i+0,5, P0 = Pn

i+0,5, E0 = En
i+0,5,

and as the velocity jump we take the difference of U in nodes at time tn+1

ΔU = |U1 − U0| =
∣∣Un+1

i+1 − Un+1
i

∣∣.
Substituting these quantities in the equations for the strong shock yields

P
n+1

i+0.5 = Pn
i+0.5 −W

(
Un+1

i+1 − Un+1
i

)
, (45)

where W depends on P0, V0, E0 and ΔU .
For a simple equation of state for condensed matter

P = (γ − 1)ρE + C2
0k(ρ− ρ0k),

Eq. (45) takes the form

P
n+1

i+0,5 = Pn
i+0,5 + bΔU2 +

√
(bΔU2)2 +

(
an

i+0,5

)2
ΔU2, (46)

where b = γ+1
4 ρn

i+0,5.
Eq. (46) has two asymptotes:

1. Weak shock, bΔU � an
i+0,5. In this case the dynamic pressure is a linear

function of ΔU :
P

n+1

i+0,5 ≈ Pn
i+0,5 + an

i+0,5ΔU. (47)
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2. Strong shock, bΔU � an
i+0,5. In this case the function is quadratic:

P
n+1

i+0,5 ≈ Pn
i+0,5 +

γ + 1
2

ρn
i+0,5ΔU2. (48)

Using these asymptotes, M. Wilkins [8] introduced a linear-quadratic ar-
tificial viscosity.

Taking Taylor series expansion of all quantities in Eqs. (41)-(44) gives
independent approximation errors:

ω2 = −τ

2
∂2U

∂t2
+ hW

∂2U

∂m2
+ τ

∂2P

∂t∂m
+ O

(
τ2, h2

)
, (49)

ω4 =
τ

2
∂U

∂t
− τ2

6
∂2U

∂t2
+ O

(
τ3
)
, (50)

ω5 = −h2

24
∂3x

∂m3
+ O

(
h3
)
, (51)

ω7 = −τ

2

(
∂2E

∂t2
− ∂P

∂t

∂V

∂t
+ P

∂2V

∂t2

)
+ hW

∂V

∂t

∂U

∂m
+ O

(
τ2, h2, τh

)
. (52)

Differentiate (42) and (43) with respect to t and m, and using the equation

∂P

∂t
+ a2 ∂U

∂m
= ω10

write ω7 as

ω7 = hW
(
1− æ

a
W

)(∂V

∂t

)2

+ O
(
τ2, h2

)
.

Since ω7 is independent, then the entropy production equation for W = a +
O(τ, h) takes the form:

T

(
∂S

∂t

)
m

= hW (1− æ)
(
∂V

∂t

)2

+ O(τ2, h2).

What about distraction in this non-divergent scheme? As earlier, go to the
self-similar variable ξ = m − Wt. The differential conservation laws with
approximation errors (50), (51), (49) and (52) are

WU ′ − P ′ − τW 2

2
U ′′ + hWU ′′ − τWP ′′ + O

(
τ2, h2

)
= 0, (53)

Wx′ + U − τW

2
U ′ + O

(
τ2
)

= 0, (54)

x′ − V + O
(
τ2
)

= 0, (55)

E′ + PV ′ − τW

2
(E′′ − P ′V ′ + PV ′′)− hWV ′U ′ + O

(
τ2, h2

)
= 0. (56)
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By differentiating (53)-(56), eliminating x′, E′′, U ′, P ′ and integrating
with respect to ξ we obtain a differential equation for V (ξ) that is identical
with the equation in the Godunov scheme. Thus, the first differential approx-
imation of the Kuropatenko non-divergent scheme has the same distraction
that the approximation of the Godunov scheme.

Is the scheme monotonic? For equation of state (28) across the compression
wave, we write the consequence of Eqs. (41)-(44) as

Pn+1
i+0,5 − Pn

i+0,5 +
τa2

h
(Un+1

i+1 − Un+1
i ) = 0. (57)

Substituting (45) in (41) yields

Un+1
i − Un

i +
τ

h
(Pn−1

i+0,5 − Pn−1
i−0,5)− æ(Un

i+1 − 2Un
i + Un

i−1) = 0. (58)

Substitute (27) in (57) and (58)

αn+1
i+0,5 + βn+1

i+0,5 + æ(αn+1
i+1 − βn+1

i+1 )−æ(αn+1
i − βn+1

i ) = αn
i+0,5 + βn

i+0,5, (59)

αn+1
i − βn+1

i = αn
i − βn

i − æ(αn−1
i+0,5 + βn−1

i+0,5) + æ(αn−1
i−0,5 + βn−1

i−0,5)+

+æ(αn
i+1 − βn

i+1)− 2æ(αn
i − βn

i ) + æ(αn
i−1 − βn

i−1). (60)

Write Eq. (60) for i + 1 and multiply by −æ, then multiply Eq. (60) by æ,
and add all to Eq. (59). For β=const, we obtain

αn+1
i+0,5 = αn

i+0,5 + (3æ2 − æ)(αn
i+1 − αn

i )− æ2(αn
i+2 − αn

i−1)+

+æ2αn−1
i+1,5 − 2æ2αn−1

i+0,5 + æ2αn−1
i−0,5.

Take the Taylor series expansions of all α in the right-hand side. We obtain
the following equation:

αn+1
i+0,5 = αn

i+0,5 − æh

(
∂α

∂m

)
i+0,5

+ æ2h2

(
∂2α

∂m2

)
i+0,5

+ O(h3). (61)

Decrease the index by 1 and subtract from (61). Then take the Taylor series
expansions at tn and mi of all quantities in the right-hand side of the obtained
equation. This gives

Δn+1
i = αn+1

i+0,5 − αn+1
i−0,5 = h

((
∂α

∂m

)
i

− æh

(
∂2α

∂m2

)
i

)
+ O(h3). (62)

For β=const, the compression wave propagates in the positive direction. Since
on the backside of the compression wave α′ � 0, α′′ � 0, then for τ ≈ 0 (æ ≈
0), it follows from (62) that Δn

i � 0. In order that Δn
i remain nonpositive, it

is required that the following condition be satisfied∣∣∣∣ ∂α∂m
∣∣∣∣− τa

∣∣∣∣ ∂2α

∂m2

∣∣∣∣ � 0.

So, the scheme is conditionally monotonic.
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4.2 Divergent scheme [10]

All thermodynamic quantities and velocities are defined at the centers of mesh
intervals and mesh nodes have coordinates tn and mi. The difference equations
are in form (11)-(14). To define auxiliary quantities P ∗

i , U∗
i , the solution in

the auxiliary interval mi−0.5 � m � mi+0.5 is divided in two: rarefaction and
compression.

Compression wave. Auxiliary quantities are found from equations (38)-(40)
for the strong shock surface. Quantities across the discontinuity are defined
as follows.

If Un
i+0.5 − Un

i−0.5 < 0, then
1. U1 = Un

i−0.5, (P, V,E, U)0 = (P, V,E, U)n
i+0.5 for Pn

i−0.5 > Pn
i+0.5,

2. U1 = Un
i+0.5, (P, V,E, U)0 = (P, V,E, U)n

i−0.5 for Pn
i−0.5 < Pn

i+0.5.
All other quantities subscripted 1 are found from (38)-(40). If consider only
W¿0, then P ∗

i , U
∗
i are defined by equations

U∗
i = Un

i−0.5, P ∗
i = Pn

i+0.5 −W
(
Un

i+0.5 − Un
i−0.5

)
. (63)

Check monotonicity of this scheme across the compression wave. Consti-
tutive equations with auxiliary quantities (63) take the form:

Pn+1
i+0.5 = Pn

i+0.5 −
τa2

h

(
Un

i+0.5 − Un
i−0.5

)
,

Un+1
i+0.5 = Un

i+0.5 −
τ

h

(
Pn

i+1.5 − Pn
i+0.5 − a

(
Un

i+1.5 − 2Un
i+0.5 + Un

i−0.5

))
.

Replace P and U by their expressions for the invariants α and β

αn+1
i+0.5 + βn+1

i+0.5 = αn
i+0.5 + βn

i+0.5 − æ
(
αn

i+0.5 − βn
i+0.5 − αn

i−0.5 + βn
i−0.5

)
,

αn+1
i+0.5 − βn+1

i+0.5 = αn
i+0.5 − βn

i+0.5 − æ
(
αn

i+1.5 + βn
i+1.5 − αn

i+0.5 − βn
i+0.5

)
+

+ æ
(
αn

i+1.5 − βn
i+1.5 − 2αn

i+0.5 + 2βn
i+0.5 + αn

i−0.5 − βn
i−0.5

)
.

Sum these equations

αn+1
i+0.5 = αn

i+0.5 (1− æ) + æαn
i−0.5 − æβn

i+1.5 + 4æβn
i+0.5 − æβn

i−0.5. (64)

If β=const, Eq. (64) takes the form

αn+1
i+0.5 = αn

i+0.5 (1− æ) + αn
i−0.5æ.

Both coefficients are positive for 0� æ �1 and hence the divergent scheme
[10], [12] is monotonic across the compression wave.

Now consider shock distraction. For this end write difference conserva-
tion laws (11)-(14) and auxiliary quantities (63) in the differential form with
approximation errors:
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ω1 = −τ

2
∂2V

∂t2
− h

2
∂2U

∂m2
+ O

(
τ2, h2

)
,

ω2 = −τ

2
∂2U

∂t2
− hW

∂2U

∂m2
− h

2
∂2P

∂m2
+ O

(
τ2, h2

)
,

ω3 = −τ

2
∂2ε

∂t2
− h

2
∂

∂m

(
U

∂P

∂m

)
+

h

2
∂

∂m

(
P

∂U

∂m

)
+ hW

∂

∂m

(
U

∂U

∂m

)
+

+O
(
τ2, h2

)
.

Go to the self-similar variable ξ = m − Wt. Then the equations take the
form

WV ′ + U ′ − τW 2

2
V ′′ − h

2
U ′′ + O

(
τ2, h2

)
= 0, (65)

WU ′ − P ′ − τW 2

2
U ′′ − h

2
P ′′ + hWU ′′ + O

(
τ2, h2

)
= 0, (66)

Wε′− (PU)′− τW

2
PU ′′− h

2
(UP ′)′ +

h

2
(PU ′)′−hW (UU ′)′ +O

(
τ2, h2

)
= 0.

(67)
Integrating with respect to ξ gives

WV + U − τW 2

2
V ′ − h

2
U ′ = WV0 + U0 + O

(
τ2, h2

)
, (68)

WU − P − τW 2

2
U ′ − h

2
P ′ + hWU ′ = W0U0 − P0 + O

(
τ2, h2

)
, (69)

Wε− PU − τW

2
(PU)′ − h

2
UP ′ +

h

2
PU ′ − hWUU ′ =

= Wε0 − P0U0 + O
(
τ2, h2

)
. (70)

Using (65)-(67), replace U ′ and P ′ in (68)-(4.2) by V ′. Then using (68)-(4.2),
replace U and P by V . We obtain an equation describing the profile V (ξ)
for the ideal gas. The equation is identical to that in the Godunov scheme.
Therefore, the distraction and the effective distraction in this scheme are
identical with DG and De

G.

5 Other difference schemes

5.1 Lax-Wendroff scheme

The scheme of Lax and Wendroff [15], [16] is worthy of considering because
of its rather wide use. Lax and Wendroff proposed that auxiliary quantities
P ∗

i , U∗
i in (11)-(13) should be defined as

P ∗
i = Pn

i −
τ

2h
(an

i )2
(
Un

i+0,5 − Un
i−0,5

)
− B

4

∣∣an
i+0,5 − an

i−0,5

∣∣(Un
i+0,5 − Un

i−0,5),
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U∗
i = Un

i −
τ

2h
(
Pn

i+0,5 − Pn
i−0,5

)
− B

4 (an
i )2
∣∣an

i+0.5 − an
i−0.5

∣∣ (Pn
i+0,5 − Pn

i−0,5

)
,

(PU)∗i = (PU)n
i −
(
Pn

i

(
Pn

i+0.5 − Pn
i−0.5

)
+(an

i )2 Un
i

(
Un

i+0,5 − Un
i−0,5

))
×

×
( τ

2h
+

B

4 (an
i )2
∣∣an

i+0,5 − an
i−0,5

∣∣) ,

where
Pn

i =
1
2
(
Pn

i+0,5 + Pn
i−0,5

)
, an

i =
1
2
(
an

i+0,5 + an
i−0,5

)
,

Un
i =

1
2
(
Un

i+0,5 + Un
i−0,5

)
, (PU)n

i =
1
2

(
(PU)n

i+0,5 + (PU)n
i−0,5

)
.

Using these equations for shock wave computing is the same as adding three
artificial viscosity terms:

qp = −B

4
h2

∣∣∣∣ ∂a∂m

∣∣∣∣ ∂U∂m, qu = −B

4
h2

a2

∣∣∣∣ ∂a∂m

∣∣∣∣ ∂P∂m,

qpu = −B

4
h2

a2

∣∣∣∣ ∂a∂m

∣∣∣∣ (P ∂P

∂m
+ a2U

∂U

∂m

)
.

They are not approximation viscosities and therefore, the Lax-Wendroff
scheme is an implementation of the Neumann-Richtmyer method. This scheme
has an empirical constant, B ≈ 1− 2, defining the boundary of the stability
region. The stability condition is

æ(æ +
1
2
B) � 1.

The scheme is non-monotonic.

5.2 Eulerian difference schemes

These difference schemes are widely used in aerodynamic calculations. In
rather detail their merits and shortcomings are considered in [17], [18]. The
only thing I would like to attract your attention to is that all these schemes
can be considered as consisting of two steps. At the first step the mesh is La-
grangian and one of the shock wave methods in the Lagrangian formulation is
used. During the second step the quantities are recalculated to transfer from
the Lagrangian mesh to the Eulerian one. The solution obtained at the first
step permits the approximation of mass, momentum and energy fluxes acting
across Eulerian cell faces without disturbing the conservation laws.
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5.3 Non-monotony reduction

Obtained solutions can be made monotonic by using special methods that al-
low their smoothing without disturbing the conservation laws. These methods
can be used along with any of the above shock wave methods. As a rule, these
methods are developed without considering the problems of energy dissipation
and entropy conservation across continuous solutions.

6 Conclusion

In conclusion I would like you to look at this table and compare the basic
parameters of the methods we have just discussed.

Parameter

Difference Schemes
Neumann- Kuropatenko
Richtmyer Lax Godunov Non-

divergent
Diver-
gent

1 Distraction,
D 2kπ

√
2

γ + 1

∞ ∞ ∞ ∞

2 Effective
distraction,
De 2k

√
2

γ + 1

2(1 − æ2)

æ (γ + 1)

√
V0 +

√
V1√

V0 −
√

V1

2(1 − æ)

(γ + 1)

√
V0 +

√
V1√

V0 −
√

V1

3 Monoto-
nicity

No Yes Yes Condi-
tional

Yes

4 Empirical
constants

k No No No No

5 Stability æ �
√

γ

2k
æ � 1 æ � 1 æ � 1 æ � 1
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