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Components of a multicomponent mixture
(MCM) can be in any aggregate state. The properties
of the mixture and the character of the interaction
between the components depend strongly on the state
of each component and on the interaction character in
the MCM. The overwhelming majority of substances
are mixtures to some degree. One promising method
for nondestructive monitoring of the medium is the
pulsed acoustic diagnostics, which is based on the
measurement of the evolution of sound signals in the
medium. In these methods, the sound velocity plays an
essential role. When determining the sound velocity in
a mixture, various authors make various simplifying
assumptions. As a result, various formulas relating the
propagation velocity of small perturbations in the mix�
ture with the velocities of sound for the components
can be derived. We analyze various equations for the
sound velocity in a mixture and suggest and substanti�
ate the formula describing the dependence of the
sound velocity in a mixture on the sound velocities and
bulk concentrations of components adequately.

Sound velocity С in an ideal uniform medium is
determined by the Laplace formula

, (1)

where  is the pressure,  is the density, and  is the
entropy. The consequence of applying formula (1) to
derive the sound velocity in the binary mixture [1–3]
in a certain system of simplifying hypotheses and N = 2
is the formula
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where  are the density, the sound velocity, and
the bulk concentration of the ith component; i is the
component number; and  are the density and the
sound velocity for the mixture. The uniqueness of for�
mula (2) is that the �dependence of  is nonmono�
tonic. It reaches the maximal value

at

.

It is seen from [1–4] that formula (2) has been
repeated in various monographs for half a century.

Let us show that we can also derive other depen�
dences  from (1) with the same simplifying
hypotheses. The parameters of the mixture are related
with the corresponding parameters of components by
instantaneous conservation laws and their conse�
quences:
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where Pi, Si, ui, and ηi are the pressure, the entropy, the
velocity, and the weight concentration of the ith com�
ponent; and N is the number of components. Concen�
trations  and  satisfy the equations
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. (7)

According to [5], the mixture has no equation of
state and application of Eq. (1) to determine the sound
velocity of the mixture requires the concretization of
its properties. The propagation velocity of a small per�
turbation (the sound) in any medium is determined by

equation , where  is the distance passed by

the perturbation in time . We will start from this def�
inition of sound velocity.

Let us consider the equilibrated mixture, each
component of which is characterized by the following
quantities: ρi0 = const, ui0 = 0, Pi0 = P0 = const, Si0 =
const, ηi0 = const, αi0 = const, Fi0 = 0, and Ci0 = const.
Let us formulate the set of simplifying hypotheses, in
the context of which we derive various dependences of
sound velocity in the mixture on the sound velocities
of components:

(i) The sound is a small perturbation: f = f0 + δf,

.

(ii) The sound is reversible: δS = 0,
.

(iii) The relaxation time of the pressures equals
zero: .

(iv) All  and  (i = 1, 2, …, N) have the same
sign.

The consequence of the fourth condition and
Eqs. (7) has the form

. (8)

To derive the �dependences of С, let us consider
Eq. (4). After its linearization allowing for (8), we
derive the �dependence of 

.

Let us divide the left side of this equation by δP and the
right side by δPi = δP, and pass to the limit at ,

, and . As a result, according to (1), we
derive the equation

. (9)

Let us express  from third Eq. (7) and substitute it
into (9). After the reduction of common multipliers,
we derive Eq. (2).

In the context of the hypotheses formulated above,
let us take Eq. (5) instead of Eq. (4). After its lineariza�
tion, allowing for (8), we derive
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Dividing this equation by δP = δPi and passing to the

limit at δP → 0,  we derive the equa�
tion; using (1), it is transformed to the form

. (10)

When deriving Eq. (10), we used Eq. (5), and when
deriving Eq. (2), we used Eq. (4). Although Eqs. (4) and
(5) are identically exact, the consequences from them
are different for the same simplifying hypotheses.

Let us consider the third method of deriving
dependence C = C(Ci, αi) in the context of the model
of the multicomponent medium [5]. In the case of an
ideal medium without thermal conductivity and
chemical reactions, the conservation laws of the mass
and pulse of the ith component in the one�dimen�
sional case have the form

, (11)

. (12)

The relation of pressure Pi with density  in the isen�
tropic flow is established by the equation of state

. (13)

The dependences between the derivatives of density
and pressure follow from (13) and (1):

. (14)

The conservation laws of the mass and pulse for the
mixture of ideal media without thermal conductivity
in the one�dimensional case are as follows:

, (15)

(16)

Let us restrict ourselves to the consideration of isen�
tropic flows, in which

Let us pass to small perturbations in (11), (12) and
(15), (16). It follows from [5] that functions 
are the following:

.
As a result, we derive four equations, which can be
written in a characteristic form after the substitution of
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derivatives of  by derivatives of Pi using (14) and
accounting for the requirements of four simplifying
hypotheses. For the ith component and the mixture
along the characteristics

equations are valid:

(17)

After integration of Eqs. (17), in the traveling wave
with the conservation of Zi and Z invariants, we derive

the relation of  with δPi and  with δP:

(18)

Let us now use Eq. (6). After linearization allowing
for (7), it has the form

. (19)

After dividing Eq. (19) by  and substituting
relations (18), we derive the equation

. (20)

Expressing  from (7) and substituting it into (20),
we derive the relation of C with Ci in the form

. (21)

The result can be formulated as follows. In the con�
text of the same simplifying hypotheses, when select�
ing one of three Eqs. (4)–(6) identically rigorous in
the theory of multicomponent media, we derive vari�
ous Ci�dependences of C (2), (10) and (21).

To reveal the arguments in favor of one of the three
dependences , let us consider the mixture
in the form of the set of planar layers, or components.
Each th layer has mass , while the mixture as a

whole has mass . When a planar shock

wave is propagated along the layered system, it passes
each ith layer with velocity Wi in time

ρi
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The shock wave will pass from one boundary of the
mixture to another one in time

. (23)

Let us determine the average velocity of the shock
wave in the mixture by the equation

. (24)

Substituting  from (22) and  from (24) into (23),
we derive the equation

. (25)

The ratio of  to  is the weight concentration .
It is known from the theory of shock waves that

. (26)

The sound perturbation is infinitesimally weak. For
the infinitesimally weak shock wave

. (27)

It follows from (25)–(27) that for the sound wave

. (28)

Expressing  from (7), substituting  into (28), and
reducing the common multipliers, we derive Eq. (21).

As one more argument, we computed the propaga�
tion of the shock wave along the layered system of pla�
nar layers of tungsten and paraffin using the VOLNA
software [6]. Equations of state were taken in the form

The table represents the parameters of the equation of
state and the initial characteristics of tungsten and
paraffin at P0 = 10–4 GPa and T0 = 293 K.

Computations for various  were performed for
convergence by the number of the pairs of layers and
by the amplitude of the initial perturbation tending to
zero. The results of computations coincide with the
computation of С by formula (21) accurate to six digits.
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Table

Substance ρ0k, g/cm3 C0k, km/s γ n ρ0, g/cm3 E0, kJ/g C0, km/s

W 19.35 4.051 2.67 3.6 19.2 0.07650 4.036

C22H46 0.930 3.357 1.667 3.5 0.91 0.364444 3.328
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It follows from the aforesaid that the sound velocity
in the multicomponent mixture is most exactly
described by formula (21).
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